MILITARY HANDBOOK
 RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

To all holders of MIL-HDBK-217F

1. The following pages of MIL-HDBK-217F have been revised and supersede the pages listed.

New Page(s)	Date	Superseded Page(s)	Date 2 December 1991
vii $5-3$		$\begin{aligned} & \text { vii } \\ & 5-3 \end{aligned}$	2 December 1991 2 December 1991
5-4		5-4	2 December 1991
5-7		5-7	2 December 1991
5-8	2 December 1991	5-8	Reprinted without change
5-9		5-9	2 December 1991
5-10	2 December 1991	5-10	Reprinted without change
5-11	2 December 1991	5-11	Reprinted without change
5-12		5-12	2 December 1991
5-13		5-13	2 December 1991
5-14	2 December 1991	5-14	Reprinted without change
5-19		5-19	2 December 1991
5-20	2 December 1991	5-20	Reprinted without change
6-15		6-15	2 December 1991
6-16	2 December 1991	6-16	Reprinted without change
7-1	2 December 1991	7-1	Reprinted without change
7-2		7-2	2 December 1991
12-3		12-3	2 December 1991
12-4	2 December 1991	12-4	Reprinted without change
A-1	2 December 1991	A-1	Reprinted without change
A-2		A-2	2 December 1991
A-3		A-3	2 December 1991
A-4	2 December 1991	A-4	Reprinted without change
A-5		A-5	2 December 1991
A-6		A-6	2 December 1991
A-7		A-7	2 December 1991
A-8		A-8	2 December 1991
A-9		A-9	2 December 1991
A-10	2 December 1991	A-10	Reprinted without change
A-11	2 December 1991	A-11	Reprinted without change
A-12		A-12	2 December 1991
A-13		A-13	2 December 1991
A-14		A-14	2 December 1991
A-15	2 December 1991	A-15	Reprinted without change
A-16		A-16	2 December 1991

AMSC N/A
DISTRIBUTION STATEMENTA: Approved for public release; distribution unlimited.

MIL-HDBK-217F

NOTICE 1

2. Retain the pages of this notice and insert before the Table of Contents.
3. Holders of MIL-HDBK-217F will verify that page changes and additions indicated have been entered. The notice pages will be retained as a check sheet. The issuance, together with appended pages, is a separate publication. Each notice is to be retained by stocking points until the military handbook is revised or canceled.

Custodians:
Army - CR
Navy - EC
Air Force-17

Preparing Activity: Air Force - 17

Project No. RELI-0068

Review Activities:
Army - MI, AV, ER
Navy - SH, AS, OS
Air Force-11, 13, 14, 15, 18, 19, 99

User Activities:
Army - AT, ME, GL
Navy - CG, MC, YD, TD
Air Force - 85

MIL-HDBK-217F, Notice 1 is issued to correct minor typographical errors in the basic F Revision. MIL-HDBK-217F (base document) provides the following changes based upon recently completed studies (see Ref. 30 and 32 listed in Appendix C):

1. New failure rate prediction models are provided for the following nine major classes of microcircuits:

- Monolithic Bipolar Digital and Linear Gate/Logic Array Devices
- Monolithic MOS Digital and Linear Gate/Logic Array Devices
- Monolithic Bipolar and MOS Digital Microprocessor Devices (Including Controllers)
- Monolithic Bipolar and MOS Memory Devices
- Monolithic GaAs Digital Devices
- Monolithic GaAs MMIC Devices
- Hybrid Microcircuits
- Magnetic Bubble Memories
- Surface Acoustic Wave Devices

This revision provides new prediction models for bipolar and MOS microcircuits with gate counts up to 60,000 , linear microcircuits with up to 3000 transistors, bipolar and MOS digital microprocessor and coprocessors up to 32 bits, memory devices with up to 1 million bits, GaAs monolithic microwave integrated circuits (MMICs) with up to 1,000 active elements, and GaAs digital ICs with up to 10,000 transistors. The C_{1} factors have been extensively revised to reflect new technology devices with improved reliability, and the activation energies representing the temperature sensitivity of the dice $\left(\pi_{\top}\right)$ have been changed for MOS devices and for memories. The C_{2} factor remains unchanged from the previous Handbook version, but includes pin grid arrays and surface mount packages using the same model as hermetic, solder-sealed dual in-line packages. New values have been included for the quality factor $\left(\pi_{\mathrm{Q}}\right)$, the learning factor $\left(\pi_{\mathrm{L}}\right)$, and the environmental factor $\left(\pi_{\mathrm{E}}\right)$. The model for hybrid microcircuits has been revised to be simpler to use, to delete the temperature dependence of the seal and interconnect failure rate contributions, and to provide a method of calculating chip junction temperatures.
2. A new model for Very High Speed Integrated Circuits (VHSIC/VHSIC Like) and Very Large Scale Integration (VLSI) devices (gate counts above 60,000).
3. The reformatting of the entire handbook to make it easier to use.
4. A reduction in the number of environmental factors $\left(\pi_{\mathrm{E}}\right)$ from 27 to 14.
5. A revised failure rate model for Network Resistors.
6. Revised models for TWTs and Klystrons based on data supplied by the Electronic Industries Association Microwave Tube Division.

MIL-HDBK-217F

NOTICE 1
5.1 MICROCIRCUITS, GATE/LOGIC ARRAYS AND MICROPROCESSORS

DESCRIPTION

1. Bipolar Devices, Digital and Linear Gate/Logic Arrays
2. MOS Devices, Digital and Linear Gate/Logic Arrays
3. Field Programmable Logic Array (PLA) and

Programmable Array Logic (PAL)
4. Microprocessors

$$
\lambda_{\mathrm{P}}=\left(C_{1} \pi_{T}+C_{2} \pi_{\mathrm{E}}\right) \pi_{\mathrm{Q}} \pi_{\mathrm{L}} \text { Failures/ } 10^{6} \text { Hours }
$$

Bipolar Digital and Linear Gate/Logic Array Die Complexity Failure Rate - C_{1}

MOS Digital and Linear Gate/Logic Array Die Complexity Failure Rate $-\mathrm{C}_{1}{ }^{*}$

Digital		Linear			PLA/PAL	
No. Gates	C_{1}	No. Tr	sistors	C_{1}	No. Gates	C_{1}
1 to 100	. 010	1	100	. 010	Up to 500	. 00085
101 to 1,000	. 020	101	300	. 020	501 to 2,000	. 0017
1,001 to 3,000	. 040	301	1,000	. 040	2,001 to 5,000	. 0034
3,001 to 10,000	. 080	1,001 to	10,000	. 060	5,001 to 20,000	. 0068
10,001 to 30,000	. 16					
30,001 to 60,000	. 29					

*NOTE: For CMOS gate counts above 60,000 use the VHSICNHSIC-Like model in Section 5.3

Microprocessor

Die Complexity Failure Rate $-\mathrm{C}_{1}$		
No. Bits	Bipolar	MOS
	.060	.14
Up to 16	.12	.28
Up to 32	.24	.56

All Other Model Parameters

Parameter	Refer to
π_{T}	Section 5.8
C_{2}	Section 5.9
$\pi_{\mathrm{E}}, \pi_{\mathrm{Q}}, \pi_{\mathrm{L}}$	Section 5.10

DESCRIPTION

1. Read Only Memories (ROM)
2. Programmable Read Only Memories (PROM)
3. Ultraviolet Eraseable PROMs (UVEPROM)
4. "Flash," MNOS and Floating Gate Electrically Eraseable PROMs (EEPROM). Includes both floating gate tunnel oxide (FLOTOX) and textured polysilicon type EEPROMs
5. Static Random Access Memories (SRAM)
6. Dynamic Random Access Memories (DRAM)

$$
\lambda_{\mathrm{p}}=\left(\mathrm{C}_{1} \pi_{\mathrm{T}}+\mathrm{C}_{2} \pi_{\mathrm{E}}+\lambda_{\text {cyc }}\right) \pi_{\mathrm{Q}} \pi_{\mathrm{L}} \quad \text { Failures } / 10^{6} \text { Hours }
$$

Die Complexity Failure Rate - C_{1}

Memory Size, B (Bits)	MOS				Bipolar	
	ROM	PROM, UVEPROM, EEPROM, EAPROM	DRAM	$\begin{gathered} \hline \text { SRAM } \\ \text { (MOS \& } \\ \text { BiCMOS) } \end{gathered}$	ROM, PROM	SRAM
Up to 16K	. 00065	. 00085	. 0013	. 0078	. 0094	. 0052
$16 \mathrm{~K}<\mathrm{B} \leq 64 \mathrm{~K}$. 0013	. 0017	. 0025	. 016	. 019	. 011
$64 \mathrm{~K}<\mathrm{B} \leq 256 \mathrm{~K}$. 0026	. 0034	. 0050	. 031	. 038	. 021
$256 \mathrm{~K}<\mathrm{B} \leq 1 \mathrm{M}$. 0052	. 0068	. 010	. 062	. 075	. 042

A_{1} Factor for $\lambda_{\text {cyc }}$ Calculation			A_{2} Factor for $\lambda_{\text {cyc }}$ Calculation	
Total No. of Programming Cycles Over	Flotox ${ }^{1}$	$\begin{aligned} & \text { Textured- } \\ & \text { Polv }^{2} \end{aligned}$	Total No. of Programming Cycles Over EEPROM Life, C	Textured-Poly A_{2}
EEPROMLIE,				
$\begin{aligned} & \text { Up to } 100 \\ & 100<C \leq 200 \end{aligned}$. 00070	. 0097	Up to 300	0
	. 0014	. 014	$300 \mathrm{~K}<\mathrm{C} \leq 400 \mathrm{~K}$	1.1
$200<\mathrm{C} \leq 500$$500<\mathrm{C} \leq 1 \mathrm{~K}$. 0034	. 023		
	. 0068	. 033	$400 \mathrm{~K}<\mathrm{C} \leq 500 \mathrm{~K}$	2.3
$1 \mathrm{~K}<\mathrm{C} \leq 3 \mathrm{~K}$. 020	. 061		
$3 \mathrm{~K}<\mathrm{C} \leq 7 \mathrm{~K}$ $7 \mathrm{~K}<\mathrm{C} \leq 15 \mathrm{~K}$. 049	. 14	All Other Model Parameters	
$\begin{aligned} & 7 K<C \leq 15 K \\ & 15 K<C \leq 20 K \end{aligned}$. 10	. 30	Parameter	Refer to
	. 14	. 30	${ }^{\pi}$ T	
$20 \mathrm{~K}<\mathrm{C} \leq 30 \mathrm{~K}$. 20	. 30		Section 5.8
$30 \mathrm{~K}<\mathrm{C} \leq 100 \mathrm{~K}$. 68	. 30		
100 K < C $\leq 200 \mathrm{~K}$	1.3	. 30	C_{2}	Section 5.9
200 K < C $\leq 400 \mathrm{~K}$	2.7	. 30		
$400 \mathrm{~K}<\mathrm{C} \leq 500 \mathrm{~K}$	3.4	. 30	$\pi_{\mathrm{E}}, \pi_{\mathrm{Q}}, \pi_{\mathrm{L}}$	Section 5.10
1. $A_{1}=6.817 \times 10^{-6}(\mathrm{C})$			$\lambda_{\text {cyc }}$ (EEPROMS only)	Page 5-5
2. No underly				
			$\lambda_{\text {cyc }}=0 \quad$ For all other devices	

5.3 MICROCIRCUITS, VHSIC/VHSIC-LIKE AND VLSI CMOS

DESCRIPTION

CMOS greater than 60,000 gates

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{BD}} \pi_{\mathrm{MFG}} \pi_{\mathrm{T}} \pi_{\mathrm{CD}}+\lambda_{\mathrm{BP}} \pi_{\mathrm{E}} \pi_{\mathrm{Q}} \pi_{\mathrm{PT}}+\lambda_{\mathrm{EOS}} \text { Failures } / 10^{6} \text { Hours }
$$

Die Base Failure Rate - λ_{BD}

Part Type	λ_{BD}
Logic and Custom	0.16
Gate Array and Memory	0.24

Manufacturing Process Correction Factor - $\pi_{\text {MFG }}$

Manufacturing Process	$\pi_{\text {MFG }}$
QML or QPL	.55
Non QML or Non QPL	2.0

All Other Model Parameters

Parameter	Refer to
π_{T}	Section 5.8
$\pi_{\mathrm{E},}, \pi_{\mathrm{Q}}$	Section 5.10

Package Type Correction Factor - $\pi_{\text {PT }}$

	π_{PT}	
Package Type	Hermetic	Nonhermetic
IIP	1.0	1.3
Pin Grid Array	2.2	2.9
Chip Carrier	4.7	6.1
(Surface Mount		
Technology)		

Die Complexity Correction Factor $-\pi_{C D}$

Feature Size	Die Area $\left(\mathrm{cm}^{2}\right)$				
(Microns)	$\mathrm{A} \leq .4$	$.4<\mathrm{A} \leq .7$	$.7<\mathrm{A} \leq 1.0$	$1.0<\mathrm{A} \leq 2.0$	$2.0<\mathrm{A} \leq 3.0$
.80	8.0	14	19	38	58
1.00	5.2	8.9	13	25	37
1.25	3.5	5.8	8.2	16	24
$\pi_{\mathrm{CD}}=\left((. \mathrm{A})\left(\frac{2}{\bar{X}_{\mathrm{s}}}\right)^{2}(.64)\right)+.36$	$\mathrm{~A}=$ Total Scribed Chip Die Area in cm^{2}	$\mathrm{X}_{\mathrm{s}}=$ Feature Size (microns)			
Die Area Conversion: $\mathrm{cm}^{2}=\mathrm{MIL}^{2} \div 155,000$					

DESCRIPTION

Gallium Arsenide Microwave Monolithic Integrated Circuit (GaAs MMIC) and GaAs Digital Integrated Circuits using MESFET Transistors and Gold Based Metallization

$$
\lambda_{\mathrm{p}}=\left[C_{1} \pi_{T} \pi_{\mathrm{A}}+C_{2} \pi_{\mathrm{E}}\right] \pi_{\mathrm{L}} \pi_{\mathrm{Q}} \text { Failures } / 10^{6} \text { Hours }
$$

MMIC: Die Complexity Failure Rates $-C_{1}$
Complexity (No. of Elements) C_{1} to 100 101 to 1000 4.5 1. C_{1} accounts for the following active elements: transistors, diodes.

Digital: Die Complexity Failure Rates - C_{1}

Complexity (No. of Elements)	C_{1}
1 to 1000 1,001 to 10,000	25

1. C_{1} accounts for the following active elements: transistors, diodes.

Device Application Factor $-\pi_{\mathrm{A}}$	
Application	π_{A}
MMIC Devices	
Low Noise \& Low Power $(\leq 100 \mathrm{~mW})$	1.0
Driver \& High Power $(>100 \mathrm{~mW})$	3.0
Unknown	3.0
Digital Devices	
All Digital Applications	1.0

All Other Model Parameters

Parameter	Refer to
π_{T}	Section 5.8
C_{2}	Section 5.9
$\pi_{\mathrm{E}}, \pi_{\mathrm{L}}, \pi_{\mathrm{Q}}$	Section 5.10

DESCRIPTION

Hybrid Microcircuits

$$
\lambda_{\mathrm{p}}=\left[\Sigma N_{c} \lambda_{\mathrm{c}}\right]\left(1+.2 \pi_{\mathrm{E}}\right) \pi_{\mathrm{F}} \pi_{\mathrm{Q}} \pi_{\mathrm{L}} \text { Failures } / 10^{6} \text { Hours }
$$

$\mathrm{N}_{\mathrm{C}}=$ Number of Each Particular Component
$\lambda_{c}=$ Failure Rate of Each Particular Component
The general procedure for developing an overall hybrid failure rate is to calculate an individual failure rate for each component type used in the hybrid and then sum them. This summation is then modified to account for the overall hybrid function (π_{F}), screening level $\left(\pi_{\mathrm{Q}}\right)$, and maturity $\left(\pi_{\mathrm{L}}\right)$. The hybrid package failure rate is a function of the active component failure modified by the environmental factor (i.e., ($1+2$ π_{E}). Only the component types listed in the following table are considered to contribute significantly to
the overall failure rate of most hybrids. All other component types (e.g., resistors, inductors, etc.) are considered to contribute insignificantly to the overall hybrid failure rate, and are assumed to have a failure rate of zero. This simplification is valid for most hybrids; however, if the hybrid consists of mostly passive components then a failure rate should be calculated for these devices. If factoring in other component types, assume $\pi_{Q}=1, \pi_{E}=1$ and $T_{A}=$ Hybrid Case Temperature for these calculations.

Determination of λ_{c}

Determine λ_{C} for These Component Types	Handbook Section	Make These Assumptions When Determining λ_{C}
Microcircuits	5	$C_{2}=0, \pi_{\mathrm{Q}}=1, \pi_{\mathrm{L}}=1, T_{J}$ as Determined from Section $5.12, \lambda_{\mathrm{BP}}=0$ (for VHSIC), $\pi_{\mathrm{E}}=1$ (for SAW).
Discrete Semiconductors	6	$\pi_{\mathrm{Q}}=1, T_{J}$ as Determined from Section 6.14, $\pi_{\mathrm{E}}=1$.
Capacitors	10	$\pi_{\mathrm{Q}}=1, T_{\mathrm{A}}=$ Hybrid Case Temperature, $\pi_{\mathrm{E}}=1$.

NOTE: If maximum rated stress for a die is unknown, assume the same as for a discretely package die of the same type. If the same die has several ratings based on the discrete packaged type, assume the lowest rating. Power rating used should be based on case temperature for discrete semiconductors.

5.6 MICROCIRCUITS, SAW DEVICES

DESCRIPTION

Surface Acoustic Wave Devices

$$
\lambda_{\mathrm{P}}=2.1 \pi_{\mathrm{Q}} \pi_{\mathrm{E}} \text { Failures } / 10^{6} \text { Hours }
$$

Quality Factor $-\pi_{\mathrm{Q}}$	
Screening Level	π_{Q}
10 Temperature Cycles $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ with end point electrical tests at temperature extremes. None beyond best commerical practices.	.10

Environmental Factor $-\pi_{\mathrm{E}}$

Environment	π_{E}
G_{B}	.5
G_{F}	2.0
G_{M}	4.0
$\mathrm{~N}_{\mathrm{S}}$	4.0
$\mathrm{~N}_{\mathrm{U}}$	6.0
$\mathrm{~A}_{\mathrm{I}}$	4.0
$\mathrm{~A}_{\mathrm{IF}}$	5.0
$\mathrm{~A}_{\mathrm{UC}}$	5.0
$\mathrm{~A}_{\mathrm{UF}}$	8.0
$\mathrm{~A}_{\mathrm{RW}}$	8.0
$\mathrm{~S}_{\mathrm{F}}$.50
M_{F}	5.0
M_{L}	12
C_{L}	220

The magnetic bubble memory device in its present form is a non-hermetic assembly consisting of the following two major structural segments:

1. A basic bubble chip or die consisting of memory or a storage area (e.g., an array of minor loops), and required control and detection elements (e.g., generators, various gates and detectors).
2. A magnetic structure to provide controlled magnetic fields consisting of permanent magnets, coils, and a housing.

These two structural segments of the device are interconnected by a mechanical substrate and lead frame. The interconnect substrate in the present technology is normally a printed circuit board. It should be noted that this model does not include external support microelectronic devices required for magnetic bubble memory operation. The model is based on Reference 33. The general form of the failure rate model is:

$$
\lambda_{p}=\lambda_{1}+\lambda_{2} \text { Failures } / 10^{6} \text { Hours }
$$

where:
$\lambda_{1}=$ Failure Rate of the Control and Detection Structure
$\lambda_{1}=\pi_{Q}\left[N_{C} C_{11} \pi_{T 1} \pi_{W}+\left(N_{C} C_{21}+C_{2}\right) \pi_{E}\right] \pi_{D} \pi_{L}$
$\lambda_{2}=$ Failure Rate of the Memory Storage Area
$\lambda_{2}=\pi_{Q} N_{C}\left(C_{12} \pi_{T 2}+C_{22} \pi_{E}\right) \pi_{L}$

Chips Per Package - N_{C}
$N_{C}=$ Number of Bubble Chips per Packaged Device

Temperature Factor $-\pi_{T}$
$\pi_{\mathrm{T}}=(.1) \exp \left[\frac{-\mathrm{Ea}}{8.63 \times 10^{-5}}\left(\frac{1}{T_{\mathrm{J}}+273}-\frac{1}{298}\right)\right]$
Use:
$\mathrm{E}_{\mathrm{a}}=.8$ to Calculate $\pi_{\mathrm{T} 1}$
$E_{a}=.55$ to Calculate $\pi_{T 2}$
$\mathrm{T}_{\mathrm{J}}=$ Junction Temperature $\left({ }^{\circ} \mathrm{C}\right)$, $25 \leq T_{J} \leq 175$
$T_{J}=T_{C A S E}+10^{\circ} \mathrm{C}$

Device Complexity Failure Rates for Control and Detection Structure - C_{11} and C_{21}

$$
C_{11}=.00095\left(\mathrm{~N}_{1}\right) \cdot 40
$$

$$
C_{21}=.0001\left(N_{1}\right) \cdot 226
$$

$N_{1}=$ Number of Dissipative Elements on a Chip (gates, detectors, generators, etc.), $\mathrm{N}_{1} \leq 1000$

Write Duty Cycle Factor - π_{W}
$\pi_{W}=\frac{10 D}{(R / W)^{3}}$
$\pi_{W}=1 \quad$ for $D \leq .03$ or $R / W \geq 2154$
D $=\frac{\text { Avg. Device Data Rate }}{\text { Mfg. Max. Rated Data Rate }} \leq 1$
RW $=$ No. of Reads per Write
NOTE:
For seed-bubble generators, divide π_{W} by 4 , or use 1 , whichever is greater.

Duty Cycle Factor - π_{D}
$\pi_{D}=.9 \mathrm{D}+.1$
D $=\frac{\text { Avg. Device Data Rate }}{\text { Mfg. Max. Rated Data Rate }} \leq 1$

Device Complexity Failure Rates for Memory Storage Structure $-\mathrm{C}_{12}$ and C_{22}
$C_{12}=.00007\left(\mathrm{~N}_{2}\right)^{3}$
$C_{22}=.00001\left(N_{2}\right)^{3}$
$N_{2}=$ Number of Bits, $N_{2} \leq 9 \times 10^{6}$

All Other Model Parameters

Parameter	Section
C_{2}	5.9
$\pi_{\mathrm{E}}, \pi_{\mathrm{Q}}, \pi_{\mathrm{L}}$	5.10

Temperature Factor For All Microcircuits - $\pi \Gamma$

$\mathrm{E}_{\mathrm{a}}=$ Effective Activation Energy (eV) (Shown Above)
$\mathrm{T}_{\mathrm{J}}=$ Worse Case Junction Temperature (Silicon Devices) or Average Active Device Channel Temperature (GaAs Devices).
See Section 5.11 (or Section 5.12 for Hybrids) for T_{J} Determination.
NOTES:

1. $T_{J}=T_{C}+P \theta_{c}$
$T_{C}=$ Case Temperature (${ }^{\circ}$ C)
$P=$ Device Power Dissipation (W)
$\theta_{\boldsymbol{X}}=$ Junction to Case Thermal Resistance (${ }^{\circ} \mathrm{CM}$)
$\theta_{J C}$ should be obtained from the device manufacturer, MIL-M-38510, or from the default values shown in Section 5.11 for the closest equivalent device.
2. Use Digital MOS column for HC, HCT, AC, ACT, C and FCT bechnologies.
3. Table entries should be considered valid only up to the rated temperature of the component under consideration.

5.9 MICROCIRCUITS, C_{2} TABLE FOR ALL

Package Failure Rate for all Microcircuits - C_{2}

Package Type					
Number of Functional Pins, N_{p}	Hermetic: DIPs w/Solder or Weld Seal, Pin Grid Array (PGA) ${ }^{1}$, SMT (Leaded and Nonleaded)	DIPs with Glass Seal ${ }^{2}$	Flatpacks with Axial Leads on 50 Mil Centers ${ }^{3}$	Cans ${ }^{4}$	Nonhermetic: DIPs, PGA, SMT (Leaded and Nonleaded) ${ }^{5}$
3	. 00092	. 00047	. 00022	. 00027	. 0012
4	. 0013	. 00073	. 00037	. 00049	. 0016
6	. 0019	. 0013	. 00078	. 0011	. 0025
8	. 0026	. 0021	. 0013	. 0020	. 0034
10	. 0034	. 0029	. 0020	. 0031	. 0043
12	. 0041	. 0038	. 0028	. 0044	. 0053
14	. 0048	. 0048	. 0037	. 0060	. 0062
16	. 0056	. 0059	. 0047	. 0079	. 0072
18	. 0064	. 0071	. 0058		. 0082
22	. 0079	. 0096	. 0083		. 010
24	. 0087	. 011	. 0098		. 011
28	. 010	. 014			. 013
36	. 013	. 020			. 017
40	. 015	. 024			. 019
64	. 025	. 048			. 032
80	. 032				. 041
128	. 053				. 068
180	. 076				. 098
224	. 097				. 12

1. $\mathrm{C}_{2}=2.8 \times 10^{-4}\left(\mathrm{~N}_{\mathrm{p}}\right)^{1.08}$
2. $\quad C_{2}=9.0 \times 10^{-5}\left(\mathrm{~N}_{\mathrm{p}}\right)^{1.51}$
3.

$C_{2}=3.0 \times 10^{-5}\left(\mathrm{~N}_{\mathrm{p}}\right)^{2.01}$
5. $\quad C_{2}=3.6 \times 10^{-4}\left(N_{p}\right)^{1.08}$

NOTES:

1. SMT: Surface Mount Techñology
2. DIP: Dual In-Line Package
3. If DIP Seal type is unknown, assume glass
4. The package failure rate $\left(C_{2}\right)$ accounts for failures associated only with the package itself.

Failures associated with mounting the package to a circuit board are accounted for in Section 16, Interconnection Assemblies;

5.12 MICROCIRCUITS, T_{J} DETERMINATION, (FOR HYBRIDS)

Typical Hybrid Characteristics

Material	Typical Usage	Typical Thickness, L_{i} (in.)	Feature From Figure 5-1	$\begin{gathered} \text { Thermal } \\ \text { Conductivity, } \\ \mathrm{K}_{\mathrm{i}} \\ \left(\frac{\mathrm{~W} / \mathrm{in}^{2}}{{ }^{\circ} \mathrm{C} / \mathrm{in}}\right) \\ \hline \end{gathered}$	$\begin{gathered} \left(\frac{1}{K_{i}}\right)\left(L_{i}\right) \\ \left(i n^{\circ}{ }^{\circ} \mathrm{C} / \mathrm{W}\right) \end{gathered}$
Silicon	Chip Device	0.010	A	2.20	. 0045
GaAs	Chip Device	0.0070	A	. 76	. 0092
Au Eutectic	Chip Attach	0.0001	B	6.9	. 000014
Solder	Chip/Substrate Attach	0.0030	B/E	1.3	. 0023
Epoxy (Dielectric)	Chip/Substrate Attach	0.0035	B/E	. 0060	. 58
Epoxy (Conductive)	Chip Attach	0.0035	B	. 15	. 023
Thick Film Dielectric	Glass Insulating Layer	0.0030	C	. 66	. 0045
Alumina	Substrate, MHP	0.025	D	. 64	. 039
Beryllium Oxide	Substrate, PHP	0.025	D	6.6	. 0038
Kovar	Case, MHP	0.020	F	. 42	. 048
Aluminum	Case, MHP	0.020	F	4.6	. 0043
Copper	Case, PHP	0.020	F	9.9	. 0020

NOTE: MHP: Multichip Hybrid Package, PHP: Power Hybrid Package (Pwr: $\mathbf{\geq 2 W}$, Typically)

$$
\theta_{J C}=\frac{\sum_{i=1}^{n}\left(\frac{1}{K_{i}}\right)\left(L_{i}\right)}{A}
$$

$\mathrm{n}=$ Number of Material Layers
$K_{i}=$ Thermal Conductivity of $i^{\text {th }}$ Material $\left(\frac{\mathrm{W} / \mathrm{in}^{2}}{{ }^{\circ} \mathrm{C} / \mathrm{in}}\right)$ (User Provided or From Table)
$L_{i}=$ Thickness of $i^{\text {th }}$ Material (in) (User Provided or From Table)
$A=$ Die Area (in^{2}). If Die Area cannot be readily determined, estimate as follows: $A=[.00278 \text { (No. of Die Active Wire Terminals) }+.0417]^{2}$

Estimate T_{j} as Follows:

$$
T_{J}=T_{C}+\left(\theta_{J C}\right) \cdot\left(P_{D}\right)
$$

$\mathrm{T}_{\mathrm{C}}=$ Hybrid Case Temperature $\left({ }^{\circ} \mathrm{C}\right.$). If unknown, use the T_{C} Default Table shown in Section 5.11.
$\theta_{\mathrm{JC}}=$ Junction-to-Case Thermal Resistance (${ }^{\circ} \mathrm{C} / \mathrm{W}$) (As determined above)
$P_{D}=$ Die Power Dissipation (W)

Example 1: CMOS Digital Gate Array

Given: A CMOS digital timing chip (4046) in an aimorne inhabited cargo application, case temperature $48^{\circ} \mathrm{C}, 75 \mathrm{~mW}$ power dissipation. The device is procured with normal manufacturer's screening consisting of temperature cycling, constant acceleration, electrical testing, seal test and external visual inspection, in the sequence given. The component manufacturer also performs a B-level burn-in followed by electrical testing. All screens and tests are performed to the applicable MIL-STD-883 screening method. The package is a 24 pin ceramic DIP with a glass seal. The device has been manufactured for several years and has 1000 transistors.

$$
\lambda_{p}=\left(C_{1} \pi_{T}+C_{2} \pi_{E}\right) \pi_{Q} \pi_{L} \quad \text { Section } 5.1
$$

C_{1}	$=.020$	1000 Transistors $=250$ Gates, MOS C 1 Table, Digital Column
π_{T}	$=.29$	Determine T_{J} from Section 5.11
		$\mathrm{T}_{J}=48^{\circ} \mathrm{C}+\left(28^{\circ} \mathrm{C} / \mathrm{W}\right)(.075 \mathrm{~W})=50^{\circ} \mathrm{C}$
		Determine π_{T} from Section 5.8, Digital MOS Column.
C_{2}	$=.011$	Section 5.9
π_{E}	$=4.0$	Section 5.10
π_{Q}	$=3.1$	Section 5.10
		Group 1 Tests 50 Points Group 3 Tests (B-level) 30 Points
		TOTAL 80 Points
		$\pi_{\mathrm{Q}}=2+\frac{87}{80}=3.1$

$$
\pi_{\mathrm{L}}=1 \quad \text { Section } 5: 10
$$

$$
\lambda_{p}=[(.020)(.29)+(.011)(4)](3.1)(1)=.15 \text { Failure/10 } 0^{6} \text { Hours }
$$

Example 2: EEPROM

Given: A 128 K Flotox EEPROM that is expected to have a T_{J} of $80^{\circ} \mathrm{C}$ and experience 10,000 read/write cycles over the life of the system. The part is procured to all requirements of Paragraph 1.2.1, MIL-STD-883, Class B screening level requirements and has been in production for three years. It is packaged in a 28 pin DIP with a glass seal and will be used in an airborne uninhabited cargo application,

$$
\pi_{\mathrm{p}}=\left(C_{1} \pi_{\mathrm{T}}+C_{2} \pi_{\mathrm{E}}+\lambda_{\mathrm{cyc}}\right) \pi_{\mathrm{Q}} \pi_{\mathrm{L}} \quad \text { Section } 5.2
$$

$C_{1}=.0034$
$\pi_{\top}=3.8$
$C_{2}=.014$

Section 5.2
Section 5.8
Section 5.9

MIL-HDBK-217F NOTICE 1

Environment Factor $-\pi_{\mathrm{E}}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	5.0
$\mathrm{~N}_{\mathrm{S}}$	4.0
$\mathrm{~N}_{\mathrm{U}}$	11
$\mathrm{~A}_{\mathrm{IC}}$	4.0
$\mathrm{~A}_{\mathrm{IF}}$	5.0
$\mathrm{~A}_{\mathrm{UC}}$	7.0
$\mathrm{~A}_{\mathrm{UF}}$	12
$\mathrm{~A}_{\mathrm{RW}}$	16
$\mathrm{~S}_{\mathrm{F}}$.50
M_{F}	9.0
M_{L}	24
C_{L}	250

6.9 TRANSISTORS, HIGH FREQUENCY, SI FET

SPECIFICATION
 MIL-S-19500

DESCRIPTION
Si FETs (Avg. Power < 300 mW , Freq. > 400 MHz)

$$
\lambda_{\mathrm{p}}=\lambda_{\mathrm{b}} \pi_{\mathrm{T}} \pi_{\mathrm{Q}} \pi_{E} \quad \text { Failures/10 }{ }^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{\mathrm{b}}$

Transistor Type	λ_{b}
MOSFET	.060
JFET	.023

Temperature Factor - $\pi_{\text {T }}$			
$\mathrm{T}_{\mathrm{j}}\left({ }^{\circ} \mathrm{C}\right)$	$\pi_{\text {T }}$	$\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$	$\pi_{\text {T }}$
25	1.0	105	3.9
30	1.1	110	4.2
35	1.2	115	4.5
40	1.4	120	4.8
45	1.5	125	5.1
50	1.6	130	5.4
55	1.8	135	5.7
60	2.0	140	6.0
65	2.1	145	6.4
70	2.3	150	6.7
75	2.5	155	7.1
80	2.7	160	7.5
85	3.0	165	7.9
90	3.2	170	8.3
95	3.4	175	8.7
100	3.7		
$\pi_{\mathrm{T}}=\exp \left(-1925\left(\frac{1}{T_{J}+273} \cdot \frac{1}{298}\right)\right)$			
$\mathrm{T}_{\mathrm{J}}=$ Junction Temperature (${ }^{\circ} \mathrm{C}$)			

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0

Environment Factor $-\pi_{\mathrm{E}}$

Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	5.0
$\mathrm{~N}_{\mathrm{S}}$	4.0
$\mathrm{~N}_{\mathrm{U}}$	11
$\mathrm{~A}_{\mathrm{IC}}$	4.0
$\mathrm{~A}_{\mathrm{IF}}$	5.0
$\mathrm{~A}_{\mathrm{UC}}$	7.0
$\mathrm{~A}_{\mathrm{UF}}$	12
$\mathrm{~A}_{\mathrm{RW}}$	16
$\mathrm{~S}_{\mathrm{F}}$.50
M_{F}	9.0
M_{L}	24
C_{L}	250

7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

DESCRIPTION

All Types Except Traveling Wave Tubes and Magnetrons. Includes Receivers, CRT, Thyratron, Crossed Field Amplifier, Pulsed Gridded, Transmitting, Vidicons, Twystron, Pulsed Klystron, CW Klystron

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{b}} \pi_{\mathrm{L}} \pi_{\mathrm{E}} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{b}$

Tube Type	λ_{b}	Tube Type	λ_{b}
Receiver		Klystron, Low Power,	
Triode, Tetrode, Pentode Power Rectifier	$\begin{gathered} 5.0 \\ 10 \end{gathered}$	(e.g. Local Oscillator)	30
CRT	9.6	Klystron, Continuous Wave*	
Thyratron	50	3 K 3000 LQ	9.0
Crossed Field Amplifier		3K50000LF	54
QK681	260	3K210000LQ	150
SFD261	150	3KM300LA	64
Pulsed Gridded		3KM3000LA	19
2041	140	3KM50000PA	110
6952	390	3KM50000PA1	120
7835	140	3KM50000PA2	150
Transmitting		4K3CC	610
Triode, Peak Pwr. $\leq 200 \mathrm{KW}$, Avg.	75	4K3SK	29
Pwr. $\leq 2 \mathrm{KW}$, Freq. $\leq 200 \mathrm{MHz}$		4K50000LQ	30
Tetrode \& Pentode, Peak Pwr.	100	4KM50LB	28 15
$\leq 200 \mathrm{KW}$, Avg. Power $\leq 2 \mathrm{KW}$, Freq. $\leq 200 \mathrm{KW}$		4KM50SJ	38
If any of the above limits exceeded	250	4KM50SK	37
Vidicon		4KM3000LR	140
Antimony Trisulfide ($\mathrm{Sb}_{2} \mathrm{~S}_{3}$)		4KM50000LQ	79
Photoconductive Material	51	4KM50000LR	57
Silicon Diode Array Photoconductive		4KM170000LA	15
Material	48	8824	130
Twystron		8825	120
VA144	850	VA800E	28
VA145E	450	VA853	70
VA145H	490	VA856B	220
VA913A	230		230
Klystron, Pulsed*			
4KMP10000LF	43	* If the CW Klystron of interest is not listed above, use the Alternate CW Klystron λ_{b} Table on the following page.	
8568	230		
L3035	66.		
L3250	69		
SAC42A	100		
VA842	18		
Z5010A	150		
ZM3038A	190		

* If the pulsed Klystron of interest is not listed above, use the Alternate Pulsed Klystron λ_{b} Table on the following page.

7.1 TUBES, ALL TYPES EXCEPT TWY AND MAGNETRON

Alternate* Base Failure Rate for Pulsed Klystrons - λ_{b}

	$F(M W)$							
	.2	.4	.6	.8	1.0	2.0	4.0	6.0
.01	16	16	16	16	16	16	16	16
.30	16	16	17	17	17	18	20	21
.80	16	17	17	18	18	21	25	30
1.0	17	17	18	18	19	22	28	34
3.0	18	20	21	23	25	34	51	
5.0	19	22	25	28	31	45	75	
8.0	21	25	30	35	40	63	110	
10	22	28	34	40	45	75		
25	31	45	60	75	90	160		

$$
\begin{aligned}
\lambda_{\mathrm{b}}= & 2.94(F)(P)+16 \\
F= & \text { Operating Frequency in } G H z, 0.2 \leq F \leq 6 \\
P= & P \text { Peak Output Power in } M W, .01 \leq P \leq 25 \text { and } \\
& P \leq 490 \mathrm{~F}^{-2.95}
\end{aligned}
$$

*See previous page for other Klystron Base Failure Rates.

Alternate* Base Failure Rate for CW Klystrons $-\lambda_{b}$

	$F(\mathrm{MHz})$							
P (KW)	300	500	800	000	2000	4000	6000	8000
0.1	30	31	33	34	38	47	57	66
1.0	31	32	33	34	39	48	57	66
3.0	32	33	34	35	40	49	58	
5.0	33	34	35	36	41	50		
8.0	34	35	37	38	42			
10	35	36	38	39	43			
30	45	46	48	49				
50	55	56	58	59				
80	70	71	73					
100	80	81						
	0	+	0046	+				
		$\begin{aligned} & \text { erage } \\ & \text { id } \mathrm{P} \text { s } \end{aligned}$	$\begin{aligned} & \text { Outp } \\ & 8.0(1 \end{aligned}$	$\begin{aligned} & \text { it Po } \\ &)^{6}(F \end{aligned}$	$\begin{aligned} & \text { wer in } \\ &)^{-1.7} \end{aligned}$	$\mathrm{xW}, 0 .$	$\leq P \leq$	
F		$\begin{aligned} & \text { peratin } \\ & 0 \leq F \leq \end{aligned}$	$\begin{aligned} & \text { ig Fre } \\ & \leq 8000 \end{aligned}$		cy in M			

Learning Factor $-\pi_{\mathrm{L}}$

T (years)	π_{L}
≤ 1	10
2	
≥ 3	2.3
$\pi_{\mathrm{L}}=10(\mathrm{~T})^{-2.1}, 1 \leq \mathrm{T} \leq 3$	
$=$	$10, \mathrm{~T} \leq 1$
$=$	$1, \mathrm{~T} \geq 3$
$\mathrm{~T}=$	Number of Years since Introduction to Field Use

Environment Factor - π_{E}

Environment	π_{E}
G_{B}	.50
G_{F}	1.0
G_{M}	14
$\mathrm{~N}_{\mathrm{S}}$	8.0
$\mathrm{~N}_{\mathrm{U}}$	24
$\mathrm{~A}_{\mathrm{IC}}$	5.0
$\mathrm{~A}_{\mathrm{IF}}$	8.0
$\mathrm{~A}_{\mathrm{UC}}$	6.0
$\mathrm{~A}_{\mathrm{UF}}$	12
$\mathrm{~A}_{\mathrm{RW}}$	40
$\mathrm{~S}_{\mathrm{F}}$.20
M_{F}	22
M_{L}	57
C_{L}	1000

[^0]
DESCRIPTION
 Rotating Synchros and Resolvers

$$
\lambda_{p}=\lambda_{b} \pi_{S} \pi_{N} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

NOTE: Synchros and resolvers are predominately used in service requiring only slow and infrequent motion. Mechanical wearout problems are infrequent so that the electrical failure mode dominates, and no mechanical mode failure rate is required in the model above.

Base Failure Rate $-\lambda_{b}$			
$\mathrm{~T}_{\mathrm{F}}\left({ }^{\circ} \mathrm{C}\right)$	λ_{b}	$\mathrm{T}_{\mathrm{F}}\left({ }^{\circ} \mathrm{C}\right)$	λ_{b}
30	.0083	85	.032
35	.0088	90	.041
40	.0095	95	.052
45	.010	100	.069
50	.011	105	.094
55	.013	110	.13
60	.014	115	.19
65	.016	120	.29
70	.019	125	.45
75	.022	130	.74
80	.027	135	1.3

$\lambda_{b}=.00535 \exp \left(\frac{T_{F}+273}{334}\right)^{8.5}$
$\mathrm{T}_{\mathrm{F}}=$ Frame Temperature $\left({ }^{\circ} \mathrm{C}\right)$
If Frame Temperature is Unknown Assume $T_{F}=40^{\circ} \mathrm{C}+$ Ambient Temperature

Size Factor $-\pi_{S}$			
DEVICE TYPE	π_{S}		
Synchro	Size 8 or Smaller	Size 10-16	Size 18 or Larger
Resolver	3	1.5	1

Number of Brushes Factor $-\pi_{N}$

Number of Brushes	π_{N}	
2	1.4	
3	2.5	
4	3.2	
Environment Factor $-\pi_{E}$		
Environment	π_{E}	
G_{B}	1.0	
G_{F}	2.0	
G_{M}	12	
N_{S}	7.0	
N_{U}	18	
$A_{I C}$	4.0	
$A_{I F}$	6.0	
$A_{U C}$	16	
$A_{U F}$	25	
$A_{R W}$	26	
S_{F}	.50	
M_{F}	14	
M_{L}	36	
C_{L}	680	

12.3 ROTATING DEVICES, ELAPSED TIME METERS

DESCRIPTION

Elapsed Time Meters

$$
\lambda_{\mathrm{p}}=\lambda_{\mathrm{b}} \pi_{\mathrm{T}} \pi_{\mathrm{E}} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{b}$	
Type	λ_{b}
A.C.	20
Inverter Driven	30
Commutator D.C.	80

Environment Factor $-\pi_{E}$	
Environment π_{E} G_{B} 1.0 G_{F} 2.0 G_{M} 12 N_{S} 7.0 N_{U} 18 $A_{I C}$ 8.0 $A_{I F}$ 16 $A_{U C}$ 25 $A_{U F}$ 26 $A_{R W}$.50 S_{F} 14 M_{F} 38 M_{L} N / A C_{L}	

Parts Count Reilability Prediction - This prediction method is applicable during bid proposal and early design phases when insufficient information is available to use the part stress analysis models shown in the main body of this Handbook. The information needed to apply the method is (1) generic part types (including complexity for microcircuits) and quantities, (2) part quality levels, and (3) equipment environment. The equipment failure rate is obtained by looking up a generic failure rate in one of the following tables, multiplying it by a quality factor, and then summing it with failure rates obtained for other components in the equipment. The general mathematical expression for equipment failure rate with this method is:

$$
\lambda_{\text {EQUIP }}=\sum_{i=1}^{i=n} N_{i}\left(\lambda_{g} \pi_{Q}\right)_{i}
$$

Equation 1
for a given equipment environment where:

$\lambda_{\text {EQUIP }}$	$=$ Total equipment failure rate (Failures $/ 10^{6}$ Hours)
λ_{g}	$=$ Generic failure rate for the $i^{\text {th }}$ generic part (Failures $/ 10^{6}$ Hours)
π_{Q}	$=$ Quality factor for the $i^{\text {th }}$ generic part
N_{i}	$=$ Quantity of $i^{\text {th }}$ generic part
n	$=$ Number of different generic part categories in the equipment

Equation 1 applies if the entire equipment is being used in one environment. If the equipment comprises several units operating in different environments (such as avionics systems with units in airborne inhabited (A_{l}) and uninhabited (A_{U}) environments), then Equation 1 should be applied to the portions of the equipment in each environment. These "environment-equipment" failure rates should be added to determine total equipment failure rate. Environmental symbols are defined in Section 3.

The quality factors to be used with each part type are shown with the applicable λ_{g} tables and are not necessarily the same values that are used in the Part Stress Analysis. Microcircuits have an additional multiplying factor, π_{L}, which accounts for the maturity of the manufacturing process. For devices in production two years or more, no modification is needed. For those in production less than two years, λ_{g} should be multiplied by the appropriate π_{L} factor (See page A-4).

It should be noted that no generic failure rates are shown for hybrid microcircuits. Each hybrid is a fairly unique device. Since none of these devices have been standardized, their complexity cannot be determined from their name or function. Identically or similarly named hybrids can have a wide range of complexity that thwarts categorization for purposes of this prediction method. If hybrids are anticipated for a design, their use and construction should be thoroughly investigated on an individual basis with application of the prediction model in Section 5.

The failure rates shown in this Appendix were calculated by assigning model default values to the failure rate models of Section 5 through 23 . The specific default values used for the model parameters are shown with the λ_{g} Tables for microcircuits. Default parameters for all other part classes are summarized in the tables starting on Page A-12. For parts with characteristics which differ significantly from the assumed defaults, or parts used in large quantities, the underlying models in the main body of this Handbook can be used.

Generlc Fallure Rate, λ_{g} (Faifures $/ 10^{6}$ Hours) for Microcircuits. See Page A-4 for π_{Q} Values
(Defaults: $\pi_{\boldsymbol{r}}$ Based on Ea Shown, Solder or Weld Seal DIPs/PGAs (No. Pins as Shown Below), $\pi_{L}=1$ (Device in Production 22 Yr.))

Section \#	Part Type	Environ. \rightarrow $\mathrm{T}_{1}\left({ }^{\circ} \mathrm{C}\right) \rightarrow$	$\begin{aligned} & G_{B} \\ & 50 \end{aligned}$	$\begin{aligned} & G_{F} \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{G}_{M} \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}_{\mathrm{S}} \\ & 60 \end{aligned}$	$\begin{aligned} & N_{u} \\ & 65 \end{aligned}$	$\begin{aligned} & \bar{A}_{1} C \\ & 75 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{IF}} \\ & 75 \\ & \hline \end{aligned}$	$\begin{aligned} & A \cup C \\ & 90 \end{aligned}$	$\begin{gathered} \bar{A}_{\mathrm{UF}} \\ 90 \end{gathered}$	$\begin{gathered} \text { A RW } \\ 75 \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{F}} \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & M_{F} \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline M_{L} \\ & 75 \\ & \hline \end{aligned}$	$\begin{aligned} & C_{L} \\ & 60 \\ & \hline \end{aligned}$
5.1	Bjpolar Technology	(16 Pin DIP) (24 Pin DIP) (40 Pin DIP) (128 Pin PGA) (180 Pin PGA) (224 Pin PGA)														
	G 1-100 Gates		. 0036	. 012	. 024	. 024	. 035	. 025	. 030	. 032	. 049	. 047	. 0036	. 030	. 069	1.2
	101-1000 Gates		. 0060	. 020	. 038	. 037	. 055	. 039	. 048	. 051	. 077	. 074	. 0060	. 046	. 11	1.9
	1001 to 3000 Gates		. 011	. 035	. 066	. 065	. 097	. 070	. 085	. 091	. 14	. 13	. 011	. 082	. 19	3.3
	3001 to 10,000 Gates		. 033	. 12	. 22	. 22	. 33	. 23	. 28	. 30	. 46	. 44	. 033	. 28	. 65	12
	10,000 to 30,000 Gates		. 052	. 17	. 33	. 33	. 48	. 34	. 42	. 45	. 68	. 65	. 052	. 41	. 95	17
	30,000 to 60,000 Gates		. 075	. 23	. 44	. 43	. 63	. 46	. 56	. 61	. 90	. 85	. 075	. 53	1.2	21
5.1	GatêLogic Arrays, Linear (Ea $=.65$)	(14 Pin DIP) (18 Pin DIP) (24 Pin DIP) (40 Pin DIP)														
	1-100 Transistors		. 0095	.024 .041	.039 .065	. 034	.049 .078	.057 .10	. 062	$\begin{aligned} & .12 \\ & 22 \end{aligned}$	$\begin{array}{r} .13 \\ .24 \end{array}$.076 .13	$.0095$. 159	
	101-300 Transistors		.017 .033	.041 .074	.065 .11	.054 .092	. 078	.10 .19	.11 .19	$\begin{aligned} & .22 \\ & .41 \end{aligned}$	$\begin{array}{r} .24 \\ .44 \end{array}$. 13	$\begin{aligned} & .017 \\ & .033 \end{aligned}$	$\begin{aligned} & .072 \\ & .12 \end{aligned}$. 15	1.4 2.0
	301 - 1000 Transistors		.033 .050	.074 .12	.11 .18	. 15	.13 .21	.19 .29	.19 .30	$\begin{array}{r} 41 \\ .63 \end{array}$	$\begin{array}{r} .44 \\ .67 \end{array}$. 22	. 033	. 12	. 26	2.0 3.4
5.1	1001-10,000 Transistors															
	Programmable Logic Arrays (Ea a.4) Up to 200 Gates	$\begin{aligned} & \text { (16 Pin DIP) } \\ & \text { (24 Pin DIP) } \\ & (40 \text { Pin DIP) } \end{aligned}$. 0061	. 016	. 029	. 027	. 040	. 032	. 037	. 044	. 061	. 054	. 0061	. 034	. 076	1.2
	201 to 1000 Gates		. 011	. 028	. 048	. 045	. 065	. 054	. 063	. 077	. 10	. 089	. 011	. 057	. 12	1.9
	1001 to 5000 Gates		. 022	. 052	. 087	. 082	. 12	. 099	. 11	. 14	. 19	. 16	. 022	. 10	. 22	3.3
5.1	MOS Jochnology															
	Gate/Logic Arrays, Digital (Ea = .35)															
	1 to 100 Gates	(16 Pin DIP)	. 0057	.. 015	. 027	. 027	. 039									
	101 to 1000 Gates	(24 Pin DIP)	. 010	. 026	. 045	. 043	. 062	. 049	. 057	. 066	. 092	. 083	. 010	. 053	.12	1.9
	1001 to 3000 Gates	(40 Pin DIP)	. 019	. 047	. 080	. 077	. 11	. 088	. 10	. 12	. 17	. 15	. 019	. 095	. 21	3.3
	3001 to 10,000 Gates	(128 Pin PGA)	. 049	. 14	. 25	. 24	. 36	. 27	. 32	. 36	. 51	. 48	. 049	. 30	. 69	12
	10,001 to 30,000 Gates	(180 Pin PGA)	. 084	. 22	. 39	. 37	. 54	. 42	. 49	. 56	. 79	. 72	. 084	. 46	1.0	17
	30,000 to 60,000 Gates	(224 Pin PGA)	. 13	. 31	. 53	. 51	. 73	. 59	. 69	. 82	1.1	. 98	. 13	. 63	1.4	21
5.1	GatéLogic Arrays, Linear (Ea = .65)	(14 Pin DIP) (18 Pin DiP) (24 Pin DIP) (40 Pin DIP)														
	1 to 100 Transistors		. 0095	. 024	. 039	. 034	. 049	. 057	. 062	. 12	.. 13	. 076	. 0095		. 096	
	101 to 300 Transistors		. 017	. 041	. 065	. 054	. 078	. 10	. 11	. 22	. 24	. 13	. 017	. 072	. 15	1.4
	301 to 1,000 Transistors		. 033	. 074	. 11	. 092	. 13	. 19	. 19	. 41	. 44	. 22	. 033	. 12	. 26	2.0 3.4
	1001 to 10,000 Transistors		. 05	. 12	. 18	. 15	. 21	. 29	. 30	. 63	. 67	. 35	. 05	. 19	41.	3.4
5.1	Floating Gate Programmable Logic Array, MOS (Ea =.35) Up to 16 K Gates 16K to 64 K Gates 64 K to 256 K Gates 256K to 1M Gates															
		$\cdots(24$ Pin DIP $)$. 0046	. 018	. 035	. 035	. 052	. 035	. 044	. 044	. 070	. 070	. 0046	. 044	. 10	1.9
		(28 Pin DIP)	. 0056	. 021	. 042	. 042	. 062	. 042	. 052	. 053	. 084	. 083	. 0056	. 052	. 12	2.3
		(28 Pin DIP)	. 0061	. 022	. 043	. 042	. 063	. 043	. 054	. 055	. 086	. 084	. 0061	. 053	. 13	2.3
		(40 Pin DIP)	. 0095	. 033	. 064	. 063	. 094	. 065	. 080	. 083	. 13	. 13	. 0095	. 079	. 19	3.3
5.1	Microprocessors, Bipolar ($\mathrm{Ea}=.4$) Up to 8 Bits Up to 16 Bits Up to 32 Bits															
		(40 Pin DIP)	. 028	. 061	. 098	. 091	. 13	. 12	. 13	. 17	. 22					
		(64 Pin PGA)	. 052	. 11	. 18	. 16	. 23	. 21	. 24	. 32	. 39	$.31$	$.052$	$.20$	$\begin{array}{r} 41 \\ 86 \end{array}$	${ }_{12}{ }^{\text {. }}$
		(128 Pin PGA)	. 11	. 23	. 36	. 33	. 47	. 44	49	. 65	. 81	. 65	. 11	. 42		
5.1	Microprocessors, MOS (Ea = .35) Up to 8 Bits Up to 16 Bits Up to 32 Bits												. 048			
		(40 Pin DIP) (64 Pin PGA)	. 048	.089 .17	. 13	. 22	.16 .29	.16 .30	. 32	. 245	. 28	. 40	. 093	. 27	. 50	5.6
		(128 Pin PGA)	. 19	. 34	. 49	45	. 60	. 61	. 66	. 90	1.1	. 82	. 19	54	1.0	12

Qually Factors - π_{0}	
Description	π_{Q}
Class Scategorias: 1. Procured in full accordance with MIL-M-38510, Class \mathbf{S} requirements. 2. Procured in full accordance with MIL-H-38535 and Appendl $\times B$ thereto (Class U). 3. Hybrids: (Procured to Class S requirements (Quallity Level K) of MLL-H-38534.	. 25
Class 8 Categrorles: 1. Procured in full accordance with MIL-M38510, Class B requirements. 2. Procured in full accordance with MIL-- 38535 , (Class Q). 3. Hybrids: Procured to Class B requirements (Qually Level H) of Mil. $\mathrm{H}-38534$.	1.0
Class B-1 Categon: Fuly complant with all requrernente of paragraph 1.2.1 of ML-STD-883 and procured to a MIL drawing, DESC drawing or other government approved documentation. (Does not include hybrids). For hybrids use custom screening section betow.	2.0

$\begin{array}{ll}\text { NOTE: } & \text { i) } \\ & \text { 2) Not Normally used in this Environment } \\ & \mathrm{T}_{\mathrm{A}}=\text { Default Component Ambient Temperature (}{ }^{\circ} \mathrm{C} \text {) }\end{array}$

	Established Reliability Styles			M	MR-SPEC	
Quality	S	\mathbf{R}	P	M	Lower	
x_{Q}	.030	.10	.30	1.0	3.0	10

NOTE: 1) - Not Normally used in this Environment
2) $T_{A}=$ Default Component Ambient Temperature (${ }^{\circ} \mathrm{C}$)

	Established Reliability Styles							
Quality	S	R	P	M	L	MIL-SPEC	Lower	
$\mathrm{I}_{\mathrm{Q}}-$.030	.10	.30	1.0	3.0	3.0	10	

Generic Fallure Rate, λ_{g} (Failures $/ 10^{6}$ Hours) for Inductive and Electromechanical Parts

π_{Q} Factor for Use with Section 11-22 Devices

Section \#	Part Type	Established Reliability	MIL-SPEC	Non-MIL
11.1, 11.2	Inductive Devices	.25*	1.0	10
12.1, 12.2, 12.3	Rotating Devices	N/A	N/A	N/A
-13.1.	Relays, Mechanical	. 60	3.0	9.0
13.2	Relays, Solid State and Time Delay (Hybrid \& Solid State)	N/A	-1.0	4
14.1, 14.2	Switches, Toggle, Pushbutton, Sensitive	N/A	1.0	20
14.3	Switches, Rotary Water	N/A	1.0	50
14.4	Switches, Thumbwheel	N/A	1.0	10
14.5	Circuit Breakers, Thermal	N/A	1.0	8.4
15.1, 15.2, 15.3	Connectors	N/A	1.0	2.0
16.1	Interconnection Assemblies	N/A	1.0	2.0
17.1	Connections	N/A	N/A	N/A
18.1	Meters, Panel	N/A	1.0	3.4
19.1	Quartz Crystals	N/A	1.0	2.1.
20.1	Lamps, Incandescent	N/A	N/A	N/A
21.1	Electronic Filters	N/A	1.0	2.9
22.1	Fuses	N/A	N/A	N/A

* Category applies only to MIL-C-39010 Coils.

Default Parameters for Discrete Semiconductors

Default Parameters for Resistors

$\begin{gathered} \text { Section } \\ \# \\ \hline \end{gathered}$	Part Type	Style	MIL-R-SPEC	π_{R}	π	$\pi_{\text {TAPS }}$	Comments
9.1 9.1	Composition	$\begin{aligned} & \text { RCR } \\ & \text { RC } \end{aligned}$	39008 11	1.1 1.1			Pw. Stress $=5,1 \mathrm{M}$ ohm Pwr. Stress $=.5,1 \mathrm{M}$ ohm
9.2	Film, Insulated	RLR	39017	1.1			Pwr. Stress $=.5,1 \mathrm{Mohm}$
9.2	Film, Insulated	RL	22684	1.1			Pwr. Stress $=.5,1 \mathrm{Mohm}$
9.2	Film, RN(R, Cor N)	RNR	55182	1.1			Pwr. Stress $=.5,1 \mathrm{Mohm}$
9.2	Film	FN	10509	1.1			Pwr. Stress $=.5,1 \mathrm{M} \mathrm{ohm}$
9.3 9.4	Film, Power Fixed, Network	$\begin{aligned} & \mathrm{FD} \\ & \mathrm{FZ} \end{aligned}$	$\begin{aligned} & 11804 \\ & 83401 \end{aligned}$	1.0			Pwr. Stress $=.5$, 100 ohm Pwr. Stress $=.5, T_{C}=T_{A}+28^{\circ} \mathrm{C}$, 10 Film Resistors
9.5	Wirewound, Accurate	RBR	39005	1.7			Pwr. Stress $=.5,100 \mathrm{~K}$ ohms
9.5	Wirewound, Accurate	RB	93	1.7			Pwr. Stress $=.5,100 \mathrm{~K}$ ohms
9.6	Wirewound, Power	RWR	39007	1.1			Pwr. Stress $=.5,5 \mathrm{~K}$ ohms, RWR 84
9.6	Wirewound, Power	RW	26	1.0			Pwr. Stress $=.5,5 \mathrm{~K}$ ohms, RW10
9.7	Wirewound, Power, Chassls Mounted	RER	39009	1.1			Pwr. Stress $=.5$, Noninductively Wound, 5K ohm, RER 55
9.7	Wirewound, Power, Chassis Mounted	RE	18546	1.1			Pwr. Stress = .5, MIL-R-18546, Char. N, 5K ohm, RE75
9.8	Thermistor	RTH	23648				Disk Type
9.9 9.9	Wrewound, Variable Whrewound, Variable	RTR	39015 27208	1.4 1.4	1.1	1.0	Pwr. Stress $=.5,5 \mathrm{k}$ ohms, 3 Taps, Voltage Stress $=.1$
9.10	Wirewound, Variable, Precision	FR	12934	1.4	1.1	1.0	Pwr. Stress $=.5,3$ Taps, Voitage Stress $=.1$ Pwr. Stress $=.5$, Construction Class $5\left(\pi_{\mathrm{c}}=1.5\right)$,
9.11	Wirewound, Variable, Semiprecision	RA	19	1.4	1.0	1.0	50 K ohm, 3 Taps, Voltage Stress $=.1$ Pwr. Stress $=.5,5 \mathrm{~K}$ ohms, 3 Taps, Voltage Stress $=.5$
9.11	Wirewound, Semiprecision	RK	39002	1.4	1.0	1.0	Pwr. Stress $=.5,3$ Taps, Voltage Stress $=.5$
9.12 9.13	Wirewound, Variable, Power	RP	22 39035	1.4	1.0 1.0	1.0	Pwr. Stress $=.5,3$ Taps, Voltage Stress $=.5$, Unenclosed ($\pi_{c}=1$)
9.13 9.13	Nonwirewound, Variable	RJJ	39035	1.2 1.2	1.0 1.0	1.0	Pwr. Stress $=.5$, 200K ohm, 3 Taps, Voltage Stress $=.5$ Pwr Stross $=5,200 \mathrm{~K}$ ohm 3 Tops, Voltage Stress $=5$
9.14	Composition, Variable	RV	94	1.2	1.0	1.0	Pwr. Stress $=.5,200 \mathrm{Kohm}$, 3 Taps, Voitage Stress $=.5$
9.15	Norwirewound, Variable Precision	RO	39023	1.2	1.0	1.0	Pwr. Stress $=.5,200 \mathrm{Kohm}, 3$ Taps, Voltage Stress $=.5$
9.15	Film, Variable	RVC	23285	1.2	1.0	1.0	Pwr. Stress $=.5,200 \mathrm{Kohm}, 3$ Taps, Voltage Stress $=.5$

Default Parameters for Capacitors

	Pant Type or Dielectric	Style	MLL-CSPEC	π_{CV}	Temp. Rating	Comments
10.1	Paper, By-Pass	CP	25	1.0	125	Voltage Stress $=.5, .15 \mu \mathrm{~F}$
10.1	Paper, By-Pass	CA	12889	1.0	85	Voltage Stress $=.5, .15 \mu \mathrm{~F}$
10.2	Paper/Plastic, Feed-through	CZR	11693	1.0	125	Voltage Stress $=.5, .061 \mu \mathrm{~F}$
10.3	Paper/Plastic Film	CPV	14157	1.0	125	Voltage Stress $=.5, .027 \mu \mathrm{~F}$
10.3	Paper/Plastic Film	COR	19978	1.0	125	Voltage Stress $=.5, .033 \mu \mathrm{~F}$
10.4	Metallized Paper/Plastic	CHR	39022	1.0	125	Voltage Stress $=.5, .14 \mu \mathrm{~F}$
10.4	Metallized Plastic/Plastic	CH	18312	1.0	125	Voltage Stress $=.5, .14 \mu \mathrm{~F}$
10.5	Metallized Paper/Plastic	CFR	55514	1.0	125	Voltage Stress $=.5, .33 \mu \mathrm{~F}$
10.6	Metallized Plastic	CPH	83421	1.0	125	Voltage Stress $=.5, .14 \mu \mathrm{~F}$
10.7	MICA (Dipped or Molded)	CMP	39001	1.0	125	Voltage Stress $=.5,300 \mathrm{pF}$
10.7	MICA (Dipped)	CM	5	1.0	125	Voltage Stress $=.5,300 \mathrm{pF}$
10.8	MICA (Button)	CB	10950	1.0	150	Voltage Stress $=.5,160 \mathrm{pF}$
10.9	Glass	CYR	23269	1.0	125	Voltage Stress $=.5,30 \mathrm{pF}$
10.9	Glass	CY	11272	1.0	125	Voltage Stress $=.5,30 \mathrm{pF}$
10.10	Ceramic (Gen. Purpose)	CK	11015	1.0	125	Voitage Stress $=.5,3300 \mathrm{pF}$
10.10	Ceramic (Gen. Purpose)	CKR	39014	1.0	125	Voltage Stress $=.5,3300 \mathrm{pF}$
10.11	Ceramic (Temp. Comp.)	CCA	20	1.0	125	Voltage Stress $=.5,81 \mathrm{pF}$
10.11	Ceramic Chlp	COR	55681	1.0	125	Volage Stress $=.5, \mathrm{B1} \mathrm{pF}$
10.12	Tantalum, Solid	CSR	39003	1.0	125	Voltage Stress $=.5,1.0 \mu \mathrm{~F}, .6 \mathrm{ohms} / \mathrm{volt}$, series resistance, $\pi_{\mathrm{SR}}=.13$
10.13	Tantalum, Non-Solid	CLR	39006	1.0	125	Voltage Stress $=.5$, Foil, Hermetic, $20 \mu \mathrm{~F}, \pi_{\mathrm{c}}=1$
10.13	Tantalum, Non-Solid	Cl	3965	1.0	125	Voltage Stress $=.5$, Foil, Hermetic, $20 \mu \mathrm{~F}, \pi_{\mathrm{C}}=1$
10.14	Aluminum Oxide	Cur	39018	1.3	125	Voltage Stress $=.5,1700 \mu \mathrm{~F}$
10.15	Aluminum Dry	CE	62	1.3	85	Voltage Stress $=.5,1600 \mu \mathrm{~F}$
10.16	Variable, Ceramic	CV	81		85 125	Voltage Stress $=.5$ Voltage Stress $=.5$
10.17	Variable, Piston	PC	14409		125 85	Voltage Stress $=.5$ Voltage Stress $=.5$
10.18 10.19	Variable, Air Trimmer Variable, Vacuum	CT	92 23183		85 85	Voltage Stress $=.50$ Vetage Stress $=.5$, Variable Configuration

Default Parameters for Inductive and Electrornechanical Parts

[^0]: *See previous page for other Klystron Base Faifure Rates.

