NOTICE OF CHANGE

NOT MEASUREMENT SENSITIVE

MIL-HDBK-217F NOTICE 1 10 JULY 1992

MILITARY HANDBOOK RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

To all holders of MIL-HDBK-217F

1. The following pages of MIL-HDBK-217F have been revised and supersede the pages listed.

New Page(s)	Date	Superseded Page(s)	Date
vii	Date	vii	2 December 1991
5-3		5-3	2 December 1991
5-4		5-4	2 December 1991
5-7		5-7	2 December 1991
5-8	2 December 1991	5-8	Reprinted without change
5-9	2 December 1991	5-9	2 December 1991
5-10	2 December 1991	5-10	Reprinted without change
5-10	2 December 1991	5-11	Reprinted without change
5-11	2 December 1991	5-12	2 December 1991
5-12		5-13	2 December 1991
5-13	2 December 1991	5-14	Reprinted without change
5-14	2 December 1991	5-19	2 December 1991
5-19	2 December 1991	5-20	Reprinted without change
6-15	2 December 1991	6-15	2 December 1991
6-16	2 December 1991	6-16	Reprinted without change
7-1	2 December 1991	7-1	Reprinted without change
7-1	2 December 1991	7-1	2 December 1991
12-3		12-3	2 December 1991
12-3	2 December 1991	12-3	
A-1	2 December 1991	A-1	Reprinted without change
	2 December 1991	A-1 A-2	Reprinted without change 2 December 1991
A-2		A-2 A-3	
A-3	0 December 1001		2 December 1991
A-4	2 December 1991	A-4	Reprinted without change
A-5		A-5	2 December 1991
A-6		A-6	2 December 1991
A-7		A-7	2 December 1991
A-8		A-8	2 December 1991
A-9		A-9	2 December 1991
A-10	2 December 1991	A-10	Reprinted without change
A-11	2 December 1991	A-11	Reprinted without change
A-12		A-12	2 December 1991
A-13		A-13	2 December 1991
A-14		A-14	2 December 1991
A-15	2 December 1991	A-15	Reprinted without change
A-16		A-16	2 December 1991

AMSC N/A <u>DISTRIBUTION STATEMENT A</u>: Approved for public release; distribution unlimited.

ARE<u>A-REL</u>I

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:38Z Check the source to verify that this is the current version before use.

- 2. Retain the pages of this notice and insert before the Table of Contents.
- 3. Holders of MIL-HDBK-217F will verify that page changes and additions indicated have been entered. The notice pages will be retained as a check sheet. The issuance, together with appended pages, is a separate publication. Each notice is to be retained by stocking points until the military handbook is revised or canceled.

Custodians:

Army - CR Navy - EC Air Force - 17 Preparing Activity: Air Force - 17-

Project No. RELI-0068

Review Activities:

Army - MI, AV, ER Navy - SH, AS, OS Air Force - 11, 13, 14, 15, 18, 19, 99

User Activities:

Army - AT, ME, GL Navy - CG, MC, YD, TD Air Force - 85

FOREWORD

MIL-HDBK-217F, Notice 1 is issued to correct minor typographical errors in the basic F Revision. MIL-HDBK-217F (base document) provides the following changes based upon recently completed studies (see Ref. 30 and 32 listed in Appendix C):

- 1. New failure rate prediction models are provided for the following nine major classes of microcircuits:
 - Monolithic Bipolar Digital and Linear Gate/Logic Array Devices
 - Monolithic MOS Digital and Linear Gate/Logic Array Devices
 - Monolithic Bipolar and MOS Digital Microprocessor Devices (Including Controllers)
 - Monolithic Bipolar and MOS Memory Devices
 - Monolithic GaAs Digital Devices
 - Monolithic GaAs MMIC Devices
 - Hybrid Microcircuits
 - Magnetic Bubble Memories
 - Surface Acoustic Wave Devices

This revision provides new prediction models for bipolar and MOS microcircuits with gate counts up to 60,000, linear microcircuits with up to 3000 transistors, bipolar and MOS digital microprocessor and coprocessors up to 32 bits, memory devices with up to 1 million bits, GaAs monolithic microwave integrated circuits (MMICs) with up to 1,000 active elements, and GaAs digital ICs with up to 10,000 transistors. The C₁ factors have been extensively revised to reflect new technology devices with improved reliability, and the activation energies representing the temperature sensitivity of the dice (π_T) have been changed for MOS devices and for memories. The C₂ factor remains unchanged from the previous Handbook version,

but includes pin grid arrays and surface mount packages using the same model as hermetic, solder-sealed dual in-line packages. New values have been included for the quality factor (π_Q), the learning factor (π_L), and the environmental factor (π_E). The model for hybrid microcircuits has been revised to be simpler to

use, to delete the temperature dependence of the seal and interconnect failure rate contributions, and to provide a method of calculating chip junction temperatures.

- 2. A new model for Very High Speed Integrated Circuits (VHSIC/VHSIC Like) and Very Large Scale Integration (VLSI) devices (gate counts above 60,000).
- 3. The reformatting of the entire handbook to make it easier to use.
- 4. A reduction in the number of environmental factors (π_E) from 27 to 14.
- 5. A revised failure rate model for Network Resistors.
- 6. Revised models for TWTs and Klystrons based on data supplied by the Electronic Industries Association Microwave Tube Division.

5.1 MICROCIRCUITS, GATE/LOGIC ARRAYS AND MICROPROCESSORS

DESCRIPTION

- 1. Bipolar Devices, Digital and Linear Gate/Logic Arrays
- 2. MOS Devices, Digital and Linear Gate/Logic Arrays
- 3. Field Programmable Logic Array (PLA) and Programmable Array Logic (PAL)
- 4. Microprocessors

$\lambda_p = (C_1 \pi_T + C_2 \pi_E) \pi_Q \pi_L$ Failures/10⁶ Hours

	Digital				Linear		PLA/PAL	
No. G	iates	с ₁	No.	Trar	nsistors	с ₁	No. Gates	C ₁
1 to 101 to 1,001 to 3,001 to 10,001 to 30,001 to		.0025 .0050 .010 .020 .040 .080	1 101 301 1,001	to to to to	100 300 1,000 10,000	.010 .020 .040 .060	Up to 200 201 to 1,000 1,001 to 5,000	.010 .021 .042

MOS Digital and Linear Gate/Logic Array Die Complexity Failure Rate - C1*

	Digital				Linear		PLA/PAL	•
No. Ga	ates	C1	No.	Tran	sistors	с ₁	No. Gates	
10,001 to	100 1,000 3,000 10,000 30,000 60,000	.010 .020 .040 .080 .16 .29	1 101 301 1,001	to to to	100 300 1,000 10,000	.010 .020 .040 .060	Up to 500 501 to 2,000 2,001 to 5,000 5,001 to 20,000	.00085 .0017 .0034 .0068

*NOTE: For CMOS gate counts above 60,000 use the VHSIC/VHSIC-Like model in Section 5.3

Microprocessor Die Complexity Failure Rate - C1

	Bipolar	MOS
No. Bits	C ₁	с ₁
Up to 8	.060	.14
Up to 16	.12	.28
Up to 32	.24	.56

All Other Model Parameters Parameter Refer to				
Refer to				
Section 5.8				
Section 5.9				
Section 5.10				

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:38Z Check the source to verify that this is the current version before use.

MICROCIRCUITS, MEMORIES 5.2

DESCRIPTION

- 1. Read Only Memories (ROM)
- 2. Programmable Read Only Memories (PROM)
- 3. Ultraviolet Eraseable PROMs (UVEPROM)
- 4. "Flash," MNOS and Floating Gate Electrically Eraseable PROMs (EEPROM). Includes both floating gate tunnel oxide (FLÓTOX) and textured polysilicon type EEPROMs
- 5. Static Random Access Memories (SRAM)
- 6. Dynamic Random Access Memories (DRÁM)

 $\lambda_p = (C_1 \pi_T + C_2 \pi_E + \lambda_{cyc}) \pi_Q \pi_L$ Failures/10⁶ Hours

	Die	Complexity Fa	allure Hate - C	4		
[M	DS		Bip	olar
Memory Size, B (Bits)	ROM	PROM, UVEPROM, EEPROM, EAPROM	DRAM	SRAM (MOS & BiCMOS)	ROM, PROM	SRAM
Up to 16K 16K < B ≤ 64K 64K < B ≤ 256K 256K < B ≤ 1M	.00065 .0013 .0026 .0052	.00085 .0017 .0034 .0068	.0013 .0025 .0050 .010	.0078 .016 .031 .062	.0094 .019 .038 .075	.0052 .011 .021 .042

Dia Complexity Feilure Date

A₁ Factor for λ_{cvc} Calculation

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Programming Cycles Over	Flotox ¹	
	$100 < C \le 200$ $200 < C \le 500$ $500 < C \le 1K$ $1K < C \le 3K$ $3K < C \le 7K$ $7K < C \le 15K$ $15K < C \le 20K$ $20K < C \le 30K$ $30K < C \le 100K$ $100K < C \le 200K$ $200K < C \le 400K$.0014 .0034 .0068 .020 .049 .10 .14 .20 .68 1.3 2.7	.014 .023 .033 .061 .14 .30 .30 .30 .30 .30 .30 .30

1. $A_1 = 6.817 \times 10^{-6} (C)$

2. No underlying equation for Textured-Poly.

A₂ Factor for λ_{cvc} Calculation

Total No. of Programming Cycles Over EEPROM Life, C	Textured-Poly A ₂
Up to 300K	0
300K < C ≤ 400K	1.1
400K < C ≤ 500K	2.3

|--|

. i

Parameter	Refer to			
π _T	Section 5.8			
С ₂	Section 5.9			
π _E , π _Q , π _L	Section 5.10			
λ _{cyc} (EEPROMS only)	Page 5-5			
$\lambda_{cyc} = 0$ For all other devices				

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:38Z Check the source to verify that this is the current version before use.

5.3 MICROCIRCUITS, VHSIC/VHSIC-LIKE AND VLSI CMOS

DESCRIPTION

CMOS greater than 60,000 gates

 $\lambda_{p} = \lambda_{BD} \pi_{MFG} \pi_{T} \pi_{CD} + \lambda_{BP} \pi_{E} \pi_{Q} \pi_{PT} + \lambda_{EOS}$ Failures/10⁶ Hours

Die Base Failure Rate - λ_{RD}

Part Type	λ _{BD}	
Logic and Custom Gate Array and Memory	0.16 0.24	-

All Other Model Parameters		
Parameter	Refer to	
^π τ ^π Ε ^{, π} Q	Section 5.8 Section 5.10	

Manufacturing Process Correction Factor - π_{MEC}

	MFG
Manufacturing Process	^π MFG
QML or QPL Non QML or Non QPL	

Package Type Correction Factor - π_{PT}

·	^π PT	
Package Type	Hermetic	Nonhermetic
DIP Pin Grid Array Chip Carrier (Surface Mount Technology)	1.0 2.2 4.7	1.3 2.9 6.1

Die Complexity Correction Factor - π_{CD}

Feature Size			Die Area (cm ²)		. <u></u>
(Microns)	A ≤ .4	.4 < A ≤ .7	.7 < A ≤ 1.0	1.0 < A ≤ 2.0	2.0 < A ≤ 3.0
.80	8.0	14	19	38	58
1.00 1.25	5.2 3.5	8.9 5.8	13 8.2	25 16	37
$\pi_{\rm CD} = \left(\left(\frac{A}{.21} \right) \right) \left(\left(\frac{A}{.21} \right) \right)$	$\left(\frac{2}{X_s}\right)^2 (.64) + .36$	A = Total Scrib	bed Chip Die Area in	cm ² X _s = Featu	re Size (microns)
Die Area Conver	rsion: $cm^2 = MIL^2$	÷ 155,000			

Package Base Failure Rate - λ_{BP}

Number of Pins	λ _{BP}
24	.0026
28	.0027
40	.0029
44	.0030
48	.0030
52	.0031
64	.0033
84	.0036
120	.0043
124	.0043
144	.0047
220	.0060
$\lambda_{BP} = .0022 + ((1.72))$	x 10 ⁻⁵) (NP))
NP = Number of Package Pins	

Electrical Overstress Failure Rate - λ_{EOS}

	reos _
V _{TH} (ESD Susceptibility (Volts))*	λ _{EOS}
0 - 1000	.065
> 1000 - 2000	.053
> 2000 - 4000	.044
> 4000 - 16000	.029
> 16000	.0027
λ _{EOS} = (-in (100057 exp(0002 V _T	_H)) /.00876
V = ESD Succeptibility (valte)	

V_{TH} = ESD Susceptibility (volts)

 Voltage ranges which will cause the part to fail. If unknown, use 0 - 1000 volts.

5.4 MICROCIRCUITS, GaAs MMIC AND DIGITAL DEVICES

DESCRIPTION

Gallium Arsenide Microwave Monolithic Integrated Circuit (GaAs MMIC) and GaAs Digital Integrated Circuits using MESFET Transistors and Gold Based Metallization

 $\lambda_p = [C_1 \pi_T \pi_A + C_2 \pi_E] \pi_L \pi_Q$ Failures/10⁶ Hours

MMIC: Die Complexity Failure Rates - C1

Complexity (No. of Elements)	C ₁
1 to 100	4.5
101 to <u>1000</u>	7.2

1. C₁ accounts for the following active elements: transistors, diodes.

Digital: Die Complexity Failure Rates - C1

Complexity (No. of Elements)	C ₁
1 to 1000	25
1,001 to 10,000	51

1. C₁ accounts for the following active elements: transistors, diodes.

Device Application Factor - π_A

<u> </u>	
Application	^π A
MMIC Devices Low Noise & Low Power (≤ 100 mW) Driver & High Power (> 100 mW) Unknown	1.0 3.0 3.0
Digital Devices All Digital Applications	1.0

All Other Model Parameters

Parameter	Refer to
πŢ	Section 5.8
C ₂	Section 5.9
^π Ε ^{, π} L ^{, π} Q	Section 5.10

5.5 MICROCIRCUITS, HYBRIDS

DESCRIPTION Hybrid Microcircuits

 $\lambda_p = \{\Sigma N_c \lambda_c\} (1 + .2 \pi_E) \pi_F \pi_O \pi_L$ Failures/10⁶ Hours

N_c = Number of Each Particular Component

 λ_{c} = Failure Rate of Each Particular Component

The general procedure for developing an overall hybrid failure rate is to calculate an individual failure rate for each component type used in the hybrid and then sum them. This summation is then modified to account for the overall hybrid function (π_F), screening level (π_Q), and maturity (π_L). The hybrid package failure rate is a function of the active component failure modified by the environmental factor (i.e., (1 + .2 π_E)). Only the component types listed in the following table are considered to contribute significantly to

the overall failure rate of most hybrids. All other component types (e.g., resistors, inductors, etc.) are considered to contribute insignificantly to the overall hybrid failure rate, and are assumed to have a failure rate of zero. This simplification is valid for most hybrids; however, if the hybrid consists of mostly passive components then a failure rate should be calculated for these devices. If factoring in other component types, assume $\pi_{O} = 1$, $\pi_{E} = 1$ and $T_{A} =$ Hybrid Case Temperature for these calculations.

Determine λ _C for These Component Types	Handbook Section	Make These Assumptions When Determining λ _c
Microcircuits	5	$C_2 = 0, \pi_Q = 1, \pi_L = 1, T_J$ as Determined from Section 5.12, $\lambda_{BP} = 0$ (for VHSIC), $\pi_E = 1$ (for SAW).
Discrete Semiconductors	6	$\pi_Q = 1, T_J$ as Determined from Section 6.14, $\pi_E = 1$.
Capacitors	10	$\pi_Q = 1, T_A =$ Hybrid Case Temperature, $\pi_E = 1.$

type, assume the lowest rating. Power rating used should be based on case temperature

Determination of λ_{c}

Circuit Function Factor - π_{F}

for discrete semiconductors.

Circuit Type	π _Ε	
Distic	1.0	
Digital Video, 10 MHz < f < 1 GHz	1.0	
Microwave, f > 1 GHz	2.6	
Linear, f < 10 MHz	5.8	
Power	21	

All Other Hybrid Model Parameters

^π L, πQ, πE	Refer to Section 5.10

Supersedes page 5-9 of Revision F

DESCRIPTION Surface Acoustic Wave Devices

$\lambda_p = 2.1 \pi_Q \pi_E$ Failures/10⁶ Hours

Quality Factor - π_Q			
Screening Level	^π Q		
10 Temperature Cycles (-55°C to +125°C) with end point electrical tests at temperature extremes.	.10		
None beyond best commerical practices.	1.0		

Environmental Factor - π _E			
Environment	πE		
.G _B	.5		
G _F	2.0		
G _M	4.0		
N _S	4.0		
NU	6.0		
AIC	4.0		
A _{IF}	5.0		
AUC	5.0		
A _{UF}	8.0		
A _{RW}	8.0		
S _F	.50		
M _F	5.0		
ML	12		
CL	220		

Environmental Factor - π_{F}

MIL-HDBK-217F

5.7 MICROCIRCUITS, MAGNETIC BUBBLE MEMORIES

The magnetic bubble memory device in its present form is a non-hermetic assembly consisting of the following two major structural segments:

- 1. A basic bubble chip or die consisting of memory or a storage area (e.g., an array of minor loops), and required control and detection elements (e.g., generators, various gates and detectors).
- 2. A magnetic structure to provide controlled magnetic fields consisting of permanent magnets, coils, and a housing.

These two structural segments of the device are interconnected by a mechanical substrate and lead frame. The interconnect substrate in the present technology is normally a printed circuit board. It should be noted that this model does not include external support microelectronic devices required for magnetic bubble memory operation. The model is based on Reference 33. The general form of the failure rate model is:

$$\lambda_{\rm D} = \lambda_1 + \lambda_2$$
 Failures/10⁶ Hours

where:

 λ_1 = Failure Rate of the Control and Detection Structure

 $\lambda_1 = \pi_Q \left[N_C C_{11} \pi_{T1} \pi_W + (N_C C_{21} + C_2) \pi_E \right] \pi_D \pi_L$

 λ_2 = Failure Rate of the Memory Storage Area

$$\lambda_2 = \pi_Q N_C (C_{12} \pi_{T2} + C_{22} \pi_E) \pi_L$$

Chips Per Package - N_C

N_C = Number of Bubble Chips per Packaged Device

Temperature Factor – π_T

$$\begin{split} \pi_{T} &= (.1) \exp \left[\frac{-Ea}{8.63 \times 10^{-5}} \left(\frac{1}{T_{J} + 273} - \frac{1}{298} \right) \right] \\ \text{Use:} \\ E_{a} &= .8 \text{ to Calculate } \pi_{T1} \\ E_{a} &= .55 \text{ to Calculate } \pi_{T2} \\ T_{J} &= Junction \text{ Temperature } (^{\circ}\text{C}), \\ &25 \leq T_{J} \leq 175 \\ T_{J} &= T_{CASE} + 10^{\circ}\text{C} \end{split}$$

Device Complexity Failure Rates for Control and Detection Structure - C₁₁ and C₂₁

$$C_{11} = .00095(N_1)^{.40}$$

$$C_{21} = .0001(N_1)^{.226}$$

$$N_1 = Number of Dissipative Elements on a Chip (gates, detectors, generators, etc.), N_4 < 1000$$

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:38Z Check the source to verify that this is the current version before use.

5.7 MICROCIRCUIT, MAGNETIC BUBBLE MEMORIES

Write Duty Cycle Factor - π_W		
πW	=	<u>10D</u> (R/W) ^{.3}
πw	=	1 for D \leq .03 or R/W \geq 2154
D	=	Avg. Device Data Rate Mfg. Max. Rated Data Rate ≤1
R/W	=	No. of Reads per Write
NOTE: For seed-bubble generators, divide π_W by 4, or use 1, whichever is greater.		

Duty Cycle Factor - TD

 $\pi_{\rm D} = .9D + .1$

 $D = \frac{Avg. Device Data Rate}{Mfg. Max. Rated Data Rate} \le 1$

Device Complexity Failure Rates for Memory Storage Structure - C_{12} and C_{22} $C_{12} = .00007(N_2)^{.3}$ $C_{22} = .00001(N_2)^{.3}$ $N_2 = Number of Bits, N_2 \le 9 \times 10^6$

All Other Model Parameters

Parameter	Section
C ₂	5.9
^π Ε, ^π Q, ^π L	5.10

Temperature Factor For All Microcircuits - π_T

MIL-HDBK-217F NOTICE 1

5.8

MICROCIRCUITS, π_T TABLE FOR ALL

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:38Z Check the source to verify that this is the current version before use.

Supersedes page 5-13 of Revision F

5-13

5.9 MICROCIRCUITS, C2 TABLE FOR ALL

Package Failure Hate for all Microcircuits - C2 Package Type					
Number of Functional Pins, N _p	Hermetic: DIPs w/Solder or Weld Seal, Pin Grid Array (PGA) ¹ , SMT (Leaded and Nonleaded)	DIPs with Glass Seal ²	Flatpacks with Axial Leads on 50 Mil Centers ³	Cans ⁴	Nonhermetic: DIPs, PGA, SMT (Leaded and Nonleaded) ⁵
3 4 6 8 10 12 14 16 18 22 24 28 36 40 64 80 128 180 224	.00092 .00047 .0013 .00073 .0019 .0013 .0026 .0021 .0034 .0029 .0041 .0038 .0056 .0059 .0064 .0071 .0079 .0096 .0087 .011 .013 .020 .015 .024 .025 .048 .032 .053 .076 .097		.00022 .00037 .00078 .0013 .0020 .0028 .0037 .0047 .0058 .0083 .0098	.00027 .00049 .0011 .0020 .0031 .0044 .0060 .0079	.0012 .0016 .0025 .0034 .0043 .0053 .0062 .0072 .0082 .010 .011 .013 .017 .019 .032 .041 .068 .098 .12
	$1.8 \times 10^{-4} (N_p)^{1}$			9.0 x 10 ⁻⁵ (N _p)	
3. C ₂ = 3	$C_2 = 3.0 \times 10^{-5} (N_p)^{1.82}$ 4. $C_2 = 3.0 \times 10^{-5} (N_p)^{2.01}$				
5. C ₂ = 3	$C_2 = 3.6 \times 10^{-4} (N_p)^{1.08}$				
NOTES:					
1. SMT: Surface Mount Technology					
2. DIP: [2. DIP: Dual In-Line Package				
3. If DIP Seal type is unknown, assume glass					
 The package failure rate (C₂) accounts for failures associated only with the package itself. Failures associated with mounting the package to a circuit board are accounted for in Section 16, Interconnection Assemblies. 					

Package Failure Rate for all Microcircuits - C2

5.12 MICROCIRCUITS, T. DETERMINATION, (FOR HYBRIDS)

Material	Typical Usage	Typical Thickness, Li (in.)	Feature From Figure 5-1	Thermal Conductivity, K_i $\left(\frac{W/in^2}{°C/in}\right)$	$\begin{pmatrix} \frac{1}{\kappa_i} \end{pmatrix} (L_i)$ $(in^2 \circ C/W)$
Silicon	Chip Device	0.010	A	2.20	.0045
GaAs	Chip Device	0.0070	Α	.76	.0092
Au Eutectic	Chip Attach	0.0001	В	6.9	.000014
Solder	Chip/Substrate Attach	0.0030	B/E	1.3	.0023
Epoxy (Dielectric)	Chip/Substrate Attach	0.0035	B/E	.0060	.58
Epoxy (Conductive)	Chip Attach	0.0035	В	.15	.023
Thick Film Dielectric	Glass Insulating Layer	0.0030	С	.66	.0045
Alumina	Substrate, MHP	0.025	D	.64	.039
Beryllium Oxide	Substrate, PHP	0.025	D	6.6	.0038
Kovar	Case, MHP	0.020	F	.42	.048
Aluminum	Case, MHP	0.020	F	4. 6	.0043
Copper	Case, PHP	0.020	F	9.9	.0020

NOTE: MHP: Multichip Hybrid Package, PHP: Power Hybrid Package (Pwr: ≥ 2W, Typically)

$$\theta_{\text{JC}} = \frac{\sum_{i=1}^{n} \left(\frac{1}{K_i}\right) \left(L_i\right)}{A}$$

- Number of Material Layers n
- Thermal Conductivity of ith Material $\left(\frac{W/in^2}{\circ C/in}\right)$ (User Provided or From Table) K_i

Thickness of ith Material (in) (User Provided or From Table) Li

Die Area (in²). If Die Area cannot be readily determined, estimate as follows: Α $A = [.00278 (No. of Die Active Wire Terminals) + .0417]^2$

Estimate T₁ as Follows:

$$T_J \approx T_C + (\theta_{JC}) (P_D)$$

TC = Hybrid Case Temperature (°C). If unknown, use the T_C Default Table shown in Section 5.11.

 θ_{JC} = Junction-to-Case Thermal Resistance (°C/W) (As determined above)

= Die Power Dissipation (W) Pn

Supersedes page 5-19 of Revision F

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:38Z Check the source to verify that this is the current version before use.

5.13 MICROCIRCUITS, EXAMPLES

Example 1: CMOS Digital Gate Array

Given: A CMOS digital timing chip (4046) in an airborne inhabited cargo application, case temperature 48°C, 75mW power dissipation. The device is procured with normal manufacturer's screening consisting of temperature cycling, constant acceleration, electrical testing, seal test and external visual inspection, in the sequence given. The component manufacturer also performs a B-level burn-in followed by electrical testing. All screens and tests are performed to the applicable MIL-STD-883 screening method. The package is a 24 pin ceramic DIP with a glass seal. The device has been manufactured for several years and has 1000 transistors.

 $\lambda_{\rm D} = (C_1 \pi_{\rm T} + C_2 \pi_{\rm E}) \pi_{\rm Q} \pi_{\rm L} \qquad \text{Section 5.1}$

C₁ .020 1000 Transistors ≈ 250 Gates, MOS C₁ Table, Digital Column .29 Determine T_{.1} from Section 5.11 $T_{.1} = 48^{\circ}C + (28^{\circ}C/W)(.075W) = 50^{\circ}C$ Determine π_T from Section 5.8, Digital MOS Column. .011 Section 5.9 Section 5.10 4.0 3.1 Section 5.10 π_{O} Group 1 Tests 50 Points Group 3 Tests (B-level) 30 Points TOTAL 80 Points $\pi_{\rm Q} = 2 + \frac{87}{80} = 3.1$ Section 5.10 π_{l}

 $\lambda_{\rm D}$ = [(.020)(.29) + (.011) (4)] (3.1)(1) = .15 Failure/10⁶ Hours

Example 2: EEPROM

Given: A 128K Flotox EEPROM that is expected to have a T_J of 80°C and experience 10,000 read/write cycles over the life of the system. The part is procured to all requirements of Paragraph 1.2.1, MIL-STD-883, Class B screening level requirements and has been in production for three years. It is packaged in a 28 pin DIP with a glass seal and will be used in an airborne uninhabited cargo application.

$$\pi_{\rm p} = (C_1 \pi_{\rm T} + C_2 \pi_{\rm E} + \lambda_{\rm CVC}) \pi_{\rm Q} \pi_{\rm L} \qquad \text{Section 5.2}$$

C ₁	=	.0034	Section 5.2
π _T	=	3.8	Section 5.8
C_2	=	.014	Section 5.9

5-20

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:38Z Check the source to verify that this is the current version before use.

.

6.8 TRANSISTORS, HIGH FREQUENCY, GaAs FET

Matching Network Factor - π_M		
Matching	π _M	
Input and Output	1.0	
Input Only	2.0	
None	4.0	

Quality Factor - π_{O}

Quality	π _Q
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0

Environment Factor - π_{E}		
Environment	π _E	
G _B	1.0	
G _F	2.0	
G _M	5.0	
- • N _S	4.0	
NU	11	
AIC	4.0	
A _{IF}	5.0	
AUC	7.0	
A _{UF}	12	
A _{RW}	16	
S _F	.50	
M _E	9.0	
ML	24	
C	250	

Supersedes page 6-15 of Revision F

6.9 TRANSISTORS, HIGH FREQUENCY, SI FET

SPECIFICATION MIL-S-19500

DESCRIPTION

Si FETs (Avg. Power < 300 mW, Freq. > 400 MHz)

 $\lambda_p = \lambda_b \pi_T \pi_O \pi_F$ Failures/10⁶ Hours

U.	<u> </u>	Ę.

Base Failure Rate - λ _b					
Transistor Type	λ _b				
MOSFET	060				
JFET	.023				

Temperature	Factor	_	π-
rompolatoro	I QUIUI		AT.

Т _Ј (°C)	πŢ	T _J (℃)	^π τ
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	1.0 1.1 1.2 1.4 1.5 1.6 1.8 2.0 2.1 2.3 2.5 2.7 3.0 3.2 3.4 3.7	105 110 115 120 125 130 135 140 145 150 155 160 165 170 175	3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.4 6.7 7.1 7.5 7.9 8.3 8.7
π _T	exp (- 1925	$\left(\frac{1}{T_{J}+273}-\frac{1}{2}\right)$	$\left(\frac{1}{298}\right)$
Т _ј =	Junction Tem	perature (°C)	

Quality Factor - π_Q							
Quality	πQ						
JANTXV	.50						
JANTX	1.0						
JAN	2.0						
Lower	5.0						

Environment	Factor	^{- π} Ε
-------------	--------	------------------

Environment	π _E
G _B	1.0
G _F	2.0
G _M	5.0
N _S	4.0
NU	11
A _{IC}	4.0
A _{IF}	5.0
Auc	7.0
AUF	12
A _{RW}	16
S _F	.50
M _F	9.0
ML	24
C	250

7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

DESCRIPTION

All Types Except Traveling Wave Tubes and Magnetrons. Includes Receivers, CRT, Thyratron, Crossed Field Amplifier, Pulsed Gridded, Transmitting, Vidicons, Twystron, Pulsed Klystron, CW Klystron

 $\lambda_p = \lambda_b \pi_L \pi_E$ Failures/10⁶ Hours

Base	Failure Rate - λ _b	
------	-------------------------------	--

Tube Type	λ _b	Tube Type	λ _b
Receiver		Klystron, Low Power,	<u>~</u>
Triode, Tetrode, Pentode	5.0	(e.g. Local Oscillator)	30
Power Rectifier	10		
CRT	9.6	Klystron, Continuous Wave*	
Thyratron	50	3K3000LQ	9.0
Crossed Field Amplifier		3K50000LF	54
QK681	260	3K210000LQ	150
SFD261	150	3KM300LA	64
Pulsed Gridded		3KM3000LA	19
2041	140	3KM50000PA	110
6952	390	3KM50000PA1	120
7835	140	3KM50000PA2	150
Transmitting		4K3CC	610
Triode, Peak Pwr. ≤ 200 KW, Avg.	75	4K3SK	29
Pwr. ≤ 2KW, Freq. ≤ 200 MHz		4K50000LQ	30
Tetrode & Pentode, Peak Pwr.	100	4KM50LB	28
≤ 200 KW, Avg. Power ≤ 2KW,		4KM50LC	15
Freq. ≤ 200 KW		4KM50SJ	38
If any of the above limits exceeded	250	4KM50SK	37
Vidicon		4KM3000LR	140
Antimony Trisulfide (Sb2S3)		4KM50000LQ	79
Photoconductive Material	51	4KM50000LR	57
Silicon Diode Array Photoconductive	51	4KM170000LA .	15
Material	48	8824	130
Twystron		8825	120
VA144	850	8826	280
VA145E	450	VA800E	70
VA145H	490	VA853	220
VA913A	230	VA856B	65
Klystron, Pulsed*		VA888E	230
4KMP10000LF	43	1	
8568	230	* If the CW Klystron of interest is no	t listod abovo
L3035	66	A	•
L3250	69	use the Alternate CW Klystron λ_b Ta	ible on the
L3403	93	following page.	
SAC42A	100		
VA842	18		
Z5010A	150		
ZM3038A	190		
If the pulsed Klystron of interest is not use the Alternate Pulsed Klystron λ _b Tal the following page.	listed above, ble on		

7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

					F((GHz)			
	P(MW)	.2	.4	.6	.8	1.0	2.0	4.0	6.0
• •	.01 .30 .80 1.0 3.0 5.0 	16 16 17 18 19 21 22 31	16 16 17 20 22 25 28 45	16 17 17 21 25 30 34 60	16 17 18 23 28 35 40 75	16 17 18 25 31 40 45 90	16 18 21 22 34 45 63 75 160	16 20 25 28 51 75 110	16 21 30 34
	_	= C = P	peratii eak Oi	-	quency 'ower i		lz, 0.2 .01 ≤ I		
	*See p Rates	reviou				ystron	Base F	ailure	

Alternate* Base Failure Rate for Pulsed Klystrons - λ_{b}

Alternate*	' Base	Failure	Rate	for	CW	Kl	ystrons -	. λμ
------------	--------	---------	------	-----	----	----	-----------	------

						<u> </u>		് വ_	
	F(MHz)								
P(KW)	300	500	800	1000	2000	4000	6000	8000	
0.1	30	31	33	34	38	47	57	66	
1.0	31	32	33	34	39	48	57	66	
3.0	32	33	34	35	40	49	58		
5.0	33	34	35		41	50			
8.0	34	35	37	38	42				
10	35	36	38	39	43				
30	45	46	48	49					
50	55	56	58	59					
80	70	71	73						
100	80	81							
		<u> </u>							
х _ь	= 0.	5P +	.0046	F + 2	29			•	
_									
۲						KW, U.	1 ≤ P ≤	100	
	ar	nd P ≤	8.0(1	0) ⁰ (F))*1.7			ĺ	
F	= 0	oerati	na Fre	ดแคก	cy in M	Hz			
			≤ 800		-,				
		s page	e for o	ther H	lystron	1 Base	Failure	ļ	
Rates									

Learning Factor - π _L			
[·] T (years)	π		
≤ 1	10		
2	2.3		
≥ 3	1.0		
$\pi_{L} = 10(T)$ = 10, T = 1, T			
	Number of Years since Introduction to Field Use		

Environment Factor - π_{F}

	<u>E</u>
Environment	π _E
G _B	.50
G _F	1.0
G _M	14
NS	8.0
NU	24
AIC	5.0
A _{IF}	8.0
AUC	6.0
A _{UF} A _{RW} S _F	12
A _{RW}	40
SF	.20
MF	22
ML	57
м _L СL	1000

12.2 ROTATING DEVICES, SYNCHROS AND RESOLVERS

DESCRIPTION

Rotating Synchros and Resolvers

$$\lambda_p = \lambda_b \pi_S \pi_N \pi_E \text{ Failures/10^6 Hours}$$

NOTE: Synchros and resolvers are predominately used in service requiring only slow and infrequent motion. Mechanical wearout problems are infrequent so that the electrical failure mode dominates, and no mechanical mode failure rate is required in the model above.

Base Failure Rate - λ_{h}

^т ғ (°С)	λ _b	⊺ _F (℃)	λ _b	
			,	
-30	.0083	85	.032	
35	.0088	90	.041	
40	.0095	95	.052	
45	.010	100	.069	
50	.011	105	.094	
55	.013	110	.13	
60	.014	115	.19	
65	.016	120	.29	
70	.019	125	.45	
75	.022	130	.74	
80	.027	135	1.3	
(T _F +273\8.5				
$\lambda = 0.0535 \exp[]$				
b 334				

T_E = Frame Temperature (°C)

If Frame Temperature is Unknown Assume $T_F = 40 \text{ °C} + \text{Ambient Temperature}$

Size	Factor	-	π_{c}
------	--------	---	-----------

16 Size 18 or Larger
1
1.5

N	umb	er	of	Brusi	hes	Fac	tor	-	πN	
---	-----	----	----	-------	-----	-----	-----	---	----	--

Number of Brushes	π _N
2	1.4
3	2.5
4	3.2

Environment Factor - π_{r}

	E
Environment	^π Ε
G _B	1.0
G _F	2.0
G _M	12
NS	7.0
NU	18
A _{IC}	4.0
A _{lF}	6.0
AUC	16
A _{UF}	25
A _{RW}	26
S _F	.50
M _F	14
ML	36
c_ ·	680

Supersedes page 12-3 of Revision F

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:38Z Check the source to verify that this is the current version before use.

12.3 ROTATING DEVICES, ELAPSED TIME METERS

DESCRIPTION Elapsed Time Meters

$$\lambda_{p} = \lambda_{b} \pi_{T} \pi_{E}$$
 Failures/10⁶ Hours

.

Base Failure Rate - λ_b

1

Туре	λ _b
A.C.	20
Inverter Driven	30
Commutator D.C.	80

Temperature Stres	ss Factor - π_T
-------------------	---------------------

Operating T (°C)/Rated T (°C)	π _T
0 to .5	.5
.6	.6
.8	.8
1.0	1.0

Environment	π _E		
G _B	1.0		
G _F	2.0		
G _M	12		
NS	7.0		
NU	18		
AIC	5.0		
AIF	8.0		
AUC	16		
A _{UF}	25		
A _{RW}	26		
S _F	.50		
M _F	14		
ML CL	38 (
CL	N/A 1		

I.

Environment Factor - n

APPENDIX A: PARTS COUNT RELIABILITY PREDICTION

Parts Count Reliability Prediction - This prediction method is applicable during bid proposal and early design phases when insufficient information is available to use the part stress analysis models shown in the main body of this Handbook. The information needed to apply the method is (1) generic part types (including complexity for microcircuits) and quantities, (2) part quality levels, and (3) equipment environment. The equipment failure rate is obtained by looking up a generic failure rate in one of the following tables, multiplying it by a quality factor, and then summing it with failure rates obtained for other components in the equipment. The general mathematical expression for equipment failure rate with this method is:

$$\lambda_{\text{EQUIP}} = \sum_{i=1}^{i=n} N_i (\lambda_g \pi_Q)_i$$

Equation 1

for a given equipment environment where:

^λ EQUIP	=	Total equipment failure rate (Failures/10 ⁶ Hours)
λg	=	Generic failure rate for the i $^{ m th}$ generic part (Failures/10 ⁶ Hours)
πQ	=	Quality factor for the i th generic part
Ni	=	Quantity of i th generic part
n	=	Number of different generic part categories in the equipment

Equation 1 applies if the entire equipment is being used in one environment. If the equipment comprises several units operating in different environments (such as avionics systems with units in airborne inhabited $(A_{||})$ and uninhabited $(A_{||})$ environments), then Equation 1 should be applied to the portions of the equipment in each environment. These "environment-equipment" failure rates should be added to determine total equipment failure rate. Environmental symbols are defined in Section 3.

The quality factors to be used with each part type are shown with the applicable λ_g tables and are not necessarily the same values that are used in the Part Stress Analysis. Microcircuits have an additional multiplying factor, π_L , which accounts for the maturity of the manufacturing process. For devices in production two years or more, no modification is needed. For those in production less than two years, λ_g should be multiplied by the appropriate π_l factor (See page A-4).

It should be noted that no generic failure rates are shown for hybrid microcircuits. Each hybrid is a fairly unique device. Since none of these devices have been standardized, their complexity cannot be determined from their name or function. Identically or similarly named hybrids can have a wide range of complexity that thwarts categorization for purposes of this prediction method. If hybrids are anticipated for a design, their use and construction should be thoroughly investigated on an individual basis with application of the prediction model in Section 5.

The failure rates shown in this Appendix were calculated by assigning model default values to the failure rate models of Section 5 through 23. The specific default values used for the model parameters are shown with the λ_g Tables for microcircuits. Default parameters for all other part classes are summarized in the tables starting on Page A-12. For parts with characteristics which differ significantly from the assumed defaults, or parts used in large quantities, the underlying models in the main body of this Handbook can be used.

MIL-HDBK-217F NOTICE 1

APPENDIX A: PARTS COUNT

Generic Failure Rate, λ_g (Failures/10⁶ Hours) for Microcircuits. See Page A-4 for π_Q Values

	(Defaults: π _T Based or	neric Failure F n Ea Shown, S	iolder or	Weld :	Seal DIP:	s/PGAs (No. Pins	as Sho	wn Beio	w), π _L =	1 (Devi	ce in Pro	oduction	≥ 2 Yr.))	
Section	Part Type	Environ	GB	ĞF	GM	NS	Nu	AIC	AIF	AUC	AUF	ARW	S _F	MF	ML	CL
#		T_J(°C) →	50	60	65	60	65	75	75	90	90	75	50	65	75	60
	Bipolar Technology															
5.1	Gate/Logic Arrays, Digital (Ea = .4)															
	1 - 100 Gates	(16 Pin DIP)	.0036	.012	.024	.024	.035	.025	.030	.032	.049	.047	.0036	.030	.069	1.2
	101 - 1000 Gates	(24 Pin DIP)	.0060	.020	.038	.037	.055	.039	.048	.051	.077	.074	.0060	.046	.11	1.9
	1001 to 3000 Gates	(40 Pin DIP)	.011	.035	.066	.065	.097	.070	.085	.091	.14	.13	.011	.082	.19	3.3
	3001 to 10,000 Gates	(128 Pin PGA)	.033	.12	.22	.22	.33	.23	.28	.30	.46	.44	.033	.28	.65 .95	12
	10,000 to 30,000 Gates	(180 Pin PGA)	.052	.17	.33	.33	.48	.34	.42	.45	.68 .90	.65 .85	.052 .075	.41 .53	1.2	17 21
	30,000 to 60,000 Gates	(224 Pin PGA)	.075	.23	.44	.43	.63	.46	.56	.61	.90	.60	.075	.55	1.2	21
5.1	Gate/Logic Arrays, Linear (Ea = .65)		.0095	.024	.039	.034	.049	.057	.062	.12	.13	.076	.0095	.044	.096	1,1
	1 - 100 Transistors	(14 Pin DIP)	.0095			.034	.049	.10	.002	.22	.13	.13	.017	072	.15	1.4
	101 - 300 Transistors	(18 Pin DIP) (24 Pin DIP)	.017	.041 .074	.065	.054	.078	.10	.19	.41	.24	.22	.033	.12	.26	2.0
	301 - 1000 Transistors 1001 - 10,000 Transistors	(40 Pin DIP)	.033	.12	.11	.092	.13	.29	.30	.63	.67	.35	.050	.19	.41	3.4
5.1	Programmable Logic Arrays (Ea = .4)		.050	. 12	.10	.15	.2	.23	.00	.00		.00	.000			
5.1	Up to 200 Gates	(16 Pin DIP)	.0061	.016	029	027	.040	032	.037	044	.061	.054	.0061	.034	.076	1.2
i	201 to 1000 Gates	(24 Pin DIP)	.0001	.018	.029	.045	.040	.054	.063	.077	.10	.089	.011	.057	.12	1.9
	1001 to 5000 Gates	(40 Pin DIP)	.022	.052	.043	.043	.12	.099	.11	.14	.19	.16	022	.10	.22	3.3
	MOS Technology	(++++++++)		.00L	.001											
5.1	Gate/Logic Arrays, Digital (Ea = .35)															
0.1	1 to 100 Gates	(16 Pin DIP)	0057	015	027	.027	039	.029	.035	.039	.056	.052	.0057	.033	.074	1.2
	101 to 1000 Gates	(24 Pin DIP)	.010	.026	.045	.043	062	.049	.057	066	.092	.083	.010	.053	.12	1.9
	1001 to 3000 Gates	(40 Pin DIP)	.019	.047	.080	.077	.11	.088	.10	.12	.17	.15	.019	.095	.21	3.3
	3001 to 10.000 Gates	(128 Pin PGA)	.049	.14	,25	.24	.36	.27	.32	.36	.51	.48	.049	.30	.69	12
	10,001 to 30,000 Gates	(180 Pin PGA)	.084	.22	.39	.37	.54	.42	.49	.56	.79	.72	.084	.46	1.0	17
	30,000 to 60,000 Gates	(224 Pin PGA)	.13	.31	.53	.51	.73	.59	.69	.82	1.1	.98	.13	.63	1.4	21
5.1	Gate/Logic Arrays, Linear (Ea = .65)												•			
	1 to 100 Transistors	(14 Pin DIP)	.0095	.024	.039	.034	.049	.057	.062	.12	13	.076	.0095	.044	.096	1.1
	101 to 300 Transistors	(18 Pin DiP)	.017	.041	.065	.054	.078	.10	.11	.22	.24	.13	.017	.072	.15	1.4
	301 to 1,000 Transistors	(24 Pin DIP)	.033	.074	.11	.092	.13	.19	.19	.41	.44	.22	.033	.12	.26	2.0
	1001 to 10,000 Transistors	(40 Pin DIP)	.05	.12	.18	.15	.21	.29	.30	.63	.67	.35	.05	.19		3.4
5.1	Floating Gate Programmable															
	Logic Array, MOS (Ea =.35)								• • • •	.					4.0	
	Up to 16K Gates	~ (24 Pin DIP)	.0046	.018	.035	.035	.052	035	.044	.044	.070	070	0046	044	.10	1.9
	16K to 64K Gates	(28 Pin DIP)	.0056	.021	.042	.042	.062	.042	.052	.053	.084	.083	.0056	.052	.12	2.3 2.3
	64K to 256K Gates	(28 Pin DIP)	.0061	.022	.043	.042	.063	.043	.054	.055	.086	.084	.0061	.053 .079	.13 .19	2.3
	256K to 1M Gates	(40 Pin DIP)	.0095	.033	.064	.063	.094	.065	.080	.083	.13	.13	.0095	.079	.19	3.3
5.1	Microprocessors, Bipolar (Ea = .4)		000					10	40	47	-	.18	.028	.11	.24	3.3
	Up to 8 Bits	(40 Pin DIP)	.028 .052	.061	.098	.091	.13	.12 .21	.13 .24	.17 .32	.22 .39	.10	.028	.20	.41	5.6
	Up to 16 Bits	(64 Pin PGA) (128 Pin PGA)	.052	.11 .23	.18 .36	.16 .33	.23 .47	,21 ,44	.24	.32	.39	.65	.052	.20	.86	12
F (Up to 32 Bits	T(128 PIN PGA)		.23	.30	.33	.4/	.44	.49	.00	.01	.00		.76	.00	
5.1	Microprocessors, MOS (Ea = .35)	(40 Pin DIP)	.048	.089	.13	.12	.16	.16	.17	.24	.28	.22	.048	.15	.28	3.4
	Up to 8 Bits	(64 Pin PGA)	.048	.089	.13	.12	.16	.30	.32	.45	.52	.40	.093	.27	.50	5.6
	Up to 16 Bits	(128 Pin PGA)	.093	.17	.24	.22	.29	.50	.66	.90	1.1	.82	.19	.54	1.0	12
	Up to 32 Bits	I LIZO FRI FGAL	د ا, ا	.34	.49	.40	.00	.01	.00	.00						

- -----

A-2

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:38Z Check the source to verify that this is the current version before use.

Supersedes page A-2 of Revision F

APPENDIX A: PARTS COUNT .

:

٠

.

;

.

	Ge (Defaults: π _T Based o	neric Fallure I n Ea Shown, S											oduction	≥ 2 Yr.))	
Section #	Part Type	Environ.→ T _J (°C) →	G _В 50	G _F 60	G _M 65	N _S 60	N _U 65	А _Ю 75	A _{lf} 75	A _{UC} 90	А _{UF} 90	A _{RW} 75	S _F 50	М _F 65	ML 75	С _L 60
5.2	MOS Technology Memories, ROM (Ea = .6)									····						
	Up to 16K	(24 Pin DIP)	.0047	.018	.036	.035	.053	.037	.045	.048	.074	.071	.0047	.044	.11	1.9
	16K to 64K	(28 Pin DIP)	.0059	.022	.043	.042	.063	.045	.055	.060	.090	.086	.0059	.053	.13	2.3
	64K 10 256K	(28 Pin DIP)	.0067	.023	.045	.044	.066	.048	.059	.068	.099	.089	.0067	.055	.13	2.3
	256K to 1 MB	(40 Pin DIP)	.011	.036	.068	.066	.098	.075	.090	.11	.15	.14	.011	.083	.20	3.3
5.2	Memories, PROM, UVEPROM, EEPROM, EAPROM (Ea = .6) (NOTE: X _{cyc} = 0 Assumed for EEPROM)												•			
	Up to 16K	(24 Pin DIP)	.0049	.018	.036	.036	.053	.037	.046	.049	.075	.072	.0048	.045	.11	1.9
	16K to 84K	(28 Pin DIP)	.0061	.022	.044	.043	.064	.046	.056	.062	.093	.087	.0062	.054	.13	2.3
ĺ	64K to 256K	(28 Pin DIP)	.0072	.024	.046	.045	.067	.051	.061	.073	.10	.092	.0072 .012	.057 .086	.13 .20	2.3 3.3
	256K to 1 MB	(40 Pin DIP)	.012	.038	.071	.068	.10	.080	.095	.12	.16	.14	.012	.000	.20	3.3
5.2	Memories, DRAM (Ea = .6) Up to 16K	(18 Pin DIP)	.0040	.014	.027	.027	.040	.029	.035	.040	.059	.055	.0040	.034	.080	1.4
•	16K to 64K	(22 Pin DIP)	.0055	.014	.027	.027	.040	.029	.033	.056	.079	.033	.0055	.043	.10	1.7
	64K to 256K	(24 Pin DIP)	.0074	.023	.043	.040	.060	.049	.058	.076	.10	.084	.0074	.051	.12	1.9
	256K to 1 MB	(28 Pin DIP)	.011	.032	.057	.053	.077	.070	.080	.12	.15	.11	.011	067	.15	2.3
5.2	Memories, SRAM, (MOS & BiMOS)				-											
0.2	(Ea = .6)															
	Up to 16K	(18 Pin DIP)	.0079	.022	.038	.034	.050	.048	.054	.083	.10	.073	.0079	.044	.098	1.4
	∍ 16K to 64K	(22 Pin DIP)	.014	.034	.057	.050	.073	.077	.085	.14	.17	.11	.014	.065	.14	1.8
	64K to 256K	(24 Pin DIP)	.023	.053	.084	.071	.10	.12	.13	.25	.27	.16	.023	.092	.19	1.9
	256K to 1 MB	(28 Pin DIP)	.043	.092	.14	11	.16	.22	.23	.46	.49	.26	.043	. <u>1</u> 5	.30 -	2.3
5.2	Bipolar Technology	1	l i													
	Memories, ROM, PROM (Ea = .6)	(24 Pin DIP)	.010	.028	.050	.046	.067	.062	.070	.10	.13	.096	.010	.058	.13	1.9
	Up to 16K	(24 Pin DIP)	.017	.028	.030	.048	.067	.082	.11	.18	.13	.14	.017	.081	.18	2.3
	16K to 64K 3 64K to 256K	(28 Pin DIP)	.028	.045	.10	.085	.12	.15	.16	.30	.33	.19	.028	.11	,23	2.3
	256K to 1 MB	(40 Pin DIP)	.053	.12	18	.15	.21	.27	.29	.56	.61	.33	.053	.19	39	3.4
5.2	Memories, SRAM (Ea = .6)															
3.2	Up to $16K$	(24 Pin DIP)	.0075	.023	.043	.041	.060	.050	.058	.077	.10	.084	.0075	.052	.12	1.9
	16K to 64K	(28 Pin DIP)	.012	.033	.058	.054	.079	.072	.083	.12	.15	.11	.012	.069	.15	2.3
	64K to 256K	(28 Pin DIP)	.018	.045	.074	.065	.095	.10	.11	.19	.22	.14	.018	.084	.18	2.3
	256K to 1 MB	(40 Pin DIP)	.033	.079	.13	.11	.16	.18	.20	,35	.39	.24	.033	.14	.30	3.4
5.3	VHSIC Microcircuits, CMOS			Refer to S	Section 5.	3, VHSIC	CMOS									
5.4	GaAs MMIC (Ea = 1.5)		<u> </u>													
	1 to 100 Elements	(8 Pin DIP)	.0013	.0052	.010	.010	.016	.011	.013	.015	.022	.021	.0013	.013	.031	.57
	101 to 1000 Active Elements (Default: Driver and High Power (> 100 mW))	(16 Pin DIP)	.0028	.011	.022,	.022	.03,4	.023	.028	.030	.047	.045	.0028	.028	.068	1.2
	GaAs Digital (Ea = 1.4)		1											_		_
5.4	1 to 1000 Active Elements	(36 Pin DIP)	.0066	.026	.052	.052	.078	.054	.067	.078	.12	.11	.0066	.065	.16	2.9
	1001 to 10,000 Active Elements	(64 Pin PGA)	.013	.050	.10	.10	.15	.10	.13	.15	.23	.20	.013	.13	.30	5.5

۰.

Supersedes page A-3 of Revision F

.

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:38Z Check the source to verify that this is the current version before use.

Aω

	Description	πc
lass S Cr	tegories:	
1.	Procured in full accordance with MIL-M-38510, Class S requirements.	
2.	Procured in full accordance with MIL-I-38535 and Appendix B thereto (Class U).	.2
3.	Hybrids: (Procured to Class S requirements (Quality Level K) of MiL-H-38534.	
lass 8 Ca	llegories:	
1.	Procured in full accordance with MIL-M-38510, Class B requirements.	
2.	Procured in full accordance with MIL-I-38535, (Class Q).	1.0
3.	Hybrids: Procured to Class B requirements (Quality Level H) of MIL-H-38534.	
lass B-1	Category:	
MILd	compliant with all requirements of paragraph 1.2.1 of MIL-STD-883 and procured to a awing, DESC drawing or other government approved documentation. (Does not e hybrids). For hybrids use custom screening section below.	2.0

Learning Factor - π_{L}				
Years in Production, Y	π			
s.1	2.0			
.5	1.8			
1.0	1.5			
1.5	1.2			
≥ 2.0	1.0			

π_L = .01 exp(5.35 - .35Y)

Y = Years generic device type has been in production

roup	MIL-STD-883 Screen/Test (Note 3)	Point	Valuation
1.	TM 1010 (Temperature Cycle, Cond B Minimum) and TM 2001 (Constant Acceleration, Cond B Minimum) and TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temp Extremes) and TM 1014 (Seal Test, Cond A, B, or C) and TM 2009 (External Visual)	50	
2.	TM 1010 (Temperature Cycle, Cond B Minimum) or TM 2001 (Constant Acceleration, Cond B Minimum) TM 5004 (or 5008 for Hybrids) (Final Electricats @ Temp Extremes) and TM 1014 (Seal Test, Cond A, B, or C) and TM 2009 (External Visual)	37	
3	Pre-Burn in Electricals TM 1015 (Burn-in B-Level/S-Level) and TM 5004 (or 5008 for Hybrids) (Post Burn-in Electricals @ Temp Extremes)	30 36	(B Level) (S Level)
4*	TM 2020 Pind (Particle Impact Noise Detection)	11	
5	TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temperature Extremes)	11	(Note 1)
6	TM 2010/17 (Internal Visual)	7	
7*	TM 1014 (Seal Test, Cond A, B, or C)	7	(Note 2)
8	TM 2012 (Radiography)	7	
9	TM 2009 (External Visual)	7	(Note 2)
10	TM 5007/5013 (GaAs) (Wafer Acceptance)	1	
11	TM 2023 (Non-Destructive Bond Pull)	1	
	^T Q = ² + ∑ Point Valuations PROPRIATE FOR PLASTIC PARTS		
OTES: 1. 2. 3. 4.	Point valuation only assigned if used independent of Groups 1, 2 or 3. Point valuation only assigned if used independent of Groups 1 or 2. Sequencing of tests within groups 1, 2 and 3 must be followed. FM refers to the MIL-STD-883 Test Method. Nonhermetic parts should be used only in controlled environments (i.e., G _B and	d other	
	emperature/humidity controlled environments).		

2. Mtg. performs internal visual test, seal test and final electrical test: $\pi_Q = 2 + \frac{87}{7+7+11} = 5.5$

Other Commercial or Unknown Screening Levels

π_Q = 10

A-4

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:38Z Check the source to verify that this is the current version before use.

2.1 ppro 9 se

Canting		Env.→ G _B	G _F	G _M	NS	NU NU	AIC	A _{IF}	Auc	AUF	ARW	s _F	M _F	ML	с _L
Section #	Part Type	$T_{j}(^{\circ}C) \rightarrow 50$	60	65	60 .	65	75	75	90	90	75	50	65	75	60
	DIODES														
6.1	General Purpose Analog	.0036	.028	.049	.043	.10	.092	.21	.20	.44	.17	.0018	.076	.23	1.5
6.1	Switching	.00094	.0075	.013	.011	.027	.024	.054	.054	.12	.045	.00047	.020	.060	.40
6.1	Fast Recovery Pwr. Rectifier	.065	.52	.89	.78	1.9	1.7	3.7	3.7	8.0	3.1	.032	1.4	4,1	28
6.1	Power Rectifier/ Schottky Pwr.	.0028	.022	.039	.034	.082	.073	.16	.16	.35	.13	.0014	.060	.18	1.2
6.1	Transient Suppressor/Varistor	.0029	.023	.040	.035	.084	.075	.17	.17	.36	.14	.0015	.062	.18	1.2
6.1	Voltage Ref/Reg. (Avalanche	.0033	.024	.039	.035	.082	.066	.15	.13	.27	.12	.0016	.060	.16	1.3
	and Zener)														
6.1	Current Regulator	.0056	.040	.066	.060	.14	.11	.25	.22	.46	.21	.0028	.10	.28	2.1
6.2	Si Impatt (f ≤ 35 GHz)	.86	2.8	8.9	5.6	20	11	14	36	62 ⁻	44	.43	16	67	350
6.2	Gunn/Bulk Effect	.31	.76	2.1	1.5	4.6	2.0	2.5	4.5	7.6	7. 9	.16	3.7	12	94
6.2	Tunnel and Back	.004	.0096	.027	.019	.058	.025	,032	.057	.097	.10	.002	.048	.15	1.2
6.2	PIN .	.028	.068	.19	.14	.41	.18	.22	.40	.69	.71	.014	.34	1.1	8.5
6.2	Schottky Barrier and Point	047	.11	.31	.23	.68	.30	.37	.67	1.1	1.2	.023	.56	1.8	14
	Contact (200 MHz ≤ 1 ≤ 35 GHz)														
6.2	Varactor	.0043	.010	.029	.021	.063	.028	.034	.062	.11	.11	.0022	.052	.17	1.3
6.10	Thyristor/SCR	.0025	.020	.034	.030	.072	.064	.14	.14	.31	.12	.0012	.053	.16	. 1.1
	TRANSISTORS	L							<u> </u>						
6.3	NPN/PNP (I < 200 MHz)	.00015	.0011	.0017	.0017	.0037	.0030	.0067	.0060	.013	.0056	.000073	.0027	.0074	.056
6.3	Power NPN/PNP (I < 200 MHz)	.0057	.042	.069	.063	.15	.12	.26	.23	.50	.22	.0029	.11	.2 9	2.2
6.4	Si FET (f ≤ 400 MHz)	.0007	.099	.16	.15	.34	.28	.62	.53	1.1	.51	.0069	.25	.68	5.3
6.9	SI FET (1 > 400 MHz)	.099	.24	.64	.47	1.4	.61	.76	1.3	2.3	2.4	.049	1.2	3.6	30
6.8	GaAs FET (P < 100 mW)	.000	.51	1.5	1.0	3.4	1.8	2.3	5.4	9.2	7.2	.083	2.8	11	63
6.8	GaAs FET (P ≥ 100 mW)	.42	1.3	3.9	2.5	8.5	4.5	5.6	13	23	18	.21	6.9	27	160
6.5	Unijunction	.016	.12	.20	.18	.42	.36	.80	.74	1.6	.66	.0079	.31	.88	6.4
6.6	P < 1W)	.094	.23	.63	.46	1.4	.60	.75	1.3	2.3	2.4	.047	1.1	3.6	28
6.7	RF, Power (P ≥ 1W)	.045	.091	.23	.18	.50	.18	.23	.32	.55	.73	.023	.41	1.1	. 11

А-5

.....

MIL-HDBK-217F NOTICE 1 Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:38Z Check the source to verify that this is the current version before use.

Supersedes page A-6 of Revision F

_

-- ---

		Generic Fai	lure Rat	te-λ _g	(Failures	/10 ⁶ Ho	urs) for	Discrete	Semico	nductor	s (cont	d)			
Section	Part Type	Env.→ G _B	G _F	GM	NS	NU	A _{IC}	AIF	Auc	AUF	ARW	s _F	M _F	м	շլ
#	· · · · · · ·	T _J (℃)→ 50	60	65	60	65	75	75	90	90	75	50	65	75	60
	OPTO-ELECTRONICS														
6.11	Photodetector	.011	.029	.13	.074	.20	.084	.13	.17	.23	.36	:0057	,15	.51	6.6
6.11	Opto-Isolator	.027	.070	.31	.17	.47	.20	,30	.42	.56	.85	·.013	.35	1.2	16
6.11	Emitter	.00047	.0012	.0056	.0031	.0084	.0035	.0053	.0074	.0098	.015	.00024	.0063	.021	.28
6.12	Alphanumeric Display	.0062	.016	.073	.040	.11	.046	.069	.096	.13	.20	.0031	.082	.28	3.6
6.13	Laser Diode, GaAs/Al GaAs	5.1	16	78	39	120	58	86	86	110	240	2.6	87	350	3600
6.13	Laser Diode, in GaAs/in GaAsP	9.0	28	135	69	200	100	150	150	200	400	4.5	150	600	6200
7	TUBES	See	Section	7 (includes	Receivers	s, CRTs, Cr	ross Field /	mplifiers, l	(lystrons, 1	IWTs, Mag	netrons)	<u> </u>			
8	LASERS	See	Section	8											

Discrete	Semiconductor	Quality	Factors	-	π_{O}	
----------	---------------	---------	---------	---	-----------	--

Section Number	Part Types	JANTXV	JANTX	JAN	Lower	Plastic
6.1, 6.3, 6.4, 6.5, 6.10, 6.11, 6.12	Non-RF Devices/ Opto-Electronics*	.70	1.0	2.4	5.5	8.0
6.2	High Freq Diodes	.50	1.0	5.0	25	50
6.2	Schottky Diodes	.50	1.0	1.8	2.5	
6.6, 6.7, 6.8, 6.9	RF Transistors	.50	1.0	2.0	5.0	
6.13	*Laser Diodes	= 1	.0 Hermetic Pac .0 Nonhermetic .3 Nonhermetic	with Facet Coa	ting Coating	

APPENDIX A: PARTS COUNT

.

.

Section #	Part Type	Style	MIL-R-	Env. \rightarrow G _B T _A (°C) \rightarrow 30	G _F 40	G _М 45	N _S 40	Ν _U 45	A _{IC} 55	A _{IF} 55	AUC 70	AUF 70	A _{RW} 55	S _F 30	М _Р : 45	М _L 55	Շ _լ 40
9,1	Composition	RCR	39008	,00050	.0022	.0071	.0037	.012	.0052	.0065	.016	.025	.025	.00025	.0098	.035	.36
9.1	Composition	RC	.	.00050	.0022	.0071	.0037	.012	.0052	.0065	.016	.025	.025	.00025	.0098	.035	.36
9.2	Film, Insulated	rl r	39017	.0012	.0027	.011	.0054	.020	.0063	.013	.018	.033	.030	.00025	.014	.044	.69
9.2	Film, Insulated	RL	22684	.0012	.0027	.011	.0054	.020	.0063	.013	.018	.033	.030	.00025	.014	.044	.69
9.2	Film, RN (R, C or N)	ANR	55182	.0014	.0031	.013	.0061	.023	.0072	.014	.021	.038	.034	.00028	.016	.050	.78
9.2	Film	FN	10509	.0014	.0031	.013	.0061	.023	.0072	.014	.021	.038	.034	.00028	.016	.050	.78
9.3	Film, Power	RD	11804	.012	.025	.13	.062	.21	.078	.10	.19	.24	.32	.0060	.18	.47	8.2
9.4	Film, Network	FZ.	83401	.0023	.0066	.031	.013	.055	.022	.043	.077	.15	.10	.0011	.055	.15	1.7
9.5	Wirewound, Accurate	RBR	39005	.0085	.018	.10	.045	.16	.15	.17	30	.38	.26	.0068	.13	.37	5.4
9.5	Wirewound, Accurate	RB	93	.0085	.018	.10	.045	.16	.15	.17	.30	.38	.26	.0068	.13	.37	5.4
9.6	Wirewound, Power	RWR	39007	.014	.031	.16	.077	.26	.073	.15	.19	.39	.42	.0042	.21	.62	9,4
9.6	Wirewound, Power	RW	26	.013	.028	.15	.070	.24	.066	.13	.18	.35	.38	.0038	.19	.56	8.6
9.7	Wirewound, Power,	RER	39009	.0080	.018	.096	.045	.15	.044	.088	.12	.24	.25	.0040	.13	.37	5.5
9.7	Chassis Mounted Wirewound, Power,	RE	18546	.0080	.018	.096	.045	.15	.044	.088	.12	.24	.25	.0040	.13	.37	5.5
9.8	Chassis Mounted Thermistor	RTH	23648	.065	.32	1.4	.71	1.6	.71	1.9	1.0	2.7	2.4	.032	1.3	3.4	62
9.9	Wirewound, Variable	RTR	39015	.026	.056	.36	.17	.59	.17	.27	.36	.60	1.1	.013	.53	1,6	25
9.9	Wirewound, Variable	RT	27208	.026	.056	.36	.17	.59	.17	.27	.36	.60	1.1	.013	.53	1.6	25
9.10	Wirewound, Variable,	FR	12934	.36	.80	7.7	3.2	13	3.9	5.8	7.8	11	26	.18	12	37	560
9.11	Precision Wirewound, Variable,	RA	19	.15	.35	3.1	1.2	5.4	1.9	2.8	•	•	9.0	.075	· •	•	•
9.11	Semiprecision Wirewound, Variable,	RK	39002	.15	.35	3.1	1.2	5.4	1.9	2.8	•	•	9.0	.075	٠	•	٠
9.12	Semiprecision Wirewound, Variable,	RP	22	.15	.51	2.9	1.2	5.0	1.6	2.4	٠	•	7.6	.076	•	•	•
9,13	Power Nonwirewound,	RJR	39035	.033	.10	.50	.21	.87	.19	.27	.52	.79	1.5	.017	.79	2.2	35
9.13	Variable Nonwirewound,	RJ	22097	.033	10	.50	.21	.87	.19	.27	.52	.79	1.5	.017	.79	2.2	35
9.14	Variable Composition, Variable	RV	94	.050	.11	1.1	.45	: 1.7	2.8	4.6	4.6	7.5	3.3	.025	1.5	4.7	67
9.15	Nonwirewound,	RQ	39023	.043	.15	.75	.35	1.3	:39	.78	1.8	2.8	2.5	.021	1.2	3.7	49
9.15	Variable Precision Film, Variable	RVC	23285	.048	.16	.76	.36	1.3	.36	.7 2	1.4	2.2	2.3	.024	1.2	3.4	52
NOTE:	1) * Not Normaliy user 2) T _A = Default Compo						Established										
				Qua	lity	S .030	R 	P .30		M 1.0	MIL-SPE 3.0	<u></u>	Lower 10	·			

.

		Established F	eliability Style	es			
Quality	S	R	P .	М	MIL-SPEC	Lower	ŀ
πġ	.030	.10	.30	1.0	3.0	10	

MIL-HDBK-217F NOTICE 1

C haye .

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:38Z Check the source to verify that this is the current version before use.

A-7

Section #	Part Type or Dielectric	Style	MIL-C-	Env.→ G _B T _A (°C)→ 30	G _⊄ 40	6 _М 45	ate, λ _g (N _S 40	NU 45	A _{IC} 55	A _{IF} 55	AUC 70	A _{UF} 70	A _{RW} 55	S _F 30	М _F 45	м _L 55	С _L 40
10.1	Paper, By-Pass	œ	25	.0036	.0072	.033	.018	.055	.023	.03	.070	.13	.083	.0018	.044	.12	2.1
10.1	Paper, By-Pass	CA	12889	.0039	.0087	.042	.022	.070	.035	.047	.19	.35	.13	.002	.056	.19	2.5
10.2	Paper/Plastic, Feed- through	CZR	11693	.0047	.0096	.044	.034	.073	.030	.040	.094	.15	.11	.0024	.058	.16	2.7
10.3	Paper/Plastic Film	CPV	14157	.0021	.0042	.017	.010	.030	.0088	.013	.026	.048	.044	.0010	.023	.063	1.1
10.3	Paper/Plastic Film	COR	19978	.0021	.0042	.017	.010	.030	.0088	.013	.026	.048	.044	.0010	.023	.063	1.1
10.4	Metallized Paper/Plastic	CHR	39022	.0029	.0058	.023	.014	.041	.012	.018	.037	.066	.060	.0014	.032	.088	1.5
10.4	Metallized Plastic/ Plastic	сн	18312	.0029	.0058	.023	.014	.041	.012	.018	.037	.066	.060	.0014	.032	.088	1.5
10.5	Metallized Paper/Plastic	CFR	55514	.0041	.0083	.042	.021	.067	.026	.048	.086	.14	.10	.0020	.054	.15	2.5
10.6	Metallized Plastic	, CFiH	83421	0023	~ .0092	019	012	033	.0096	.014	034	053	048	.0011	026	.07	1.2
10.7	MICA (Dipped or Molded)	CMR	39001	.0005	.0015	.0091	.0044	.014	.0068	.0095	.054	.069	.031	.00025	.012	.046	.45
10.7	MICA (Dipped)	СМ	5	.0005	.0015	.0091	.0044	.014	.0068	.0095	.054	.069	.031	.00025	.012	.046	.45
10.8	MICA (Button)	СВ	10950	.018	.037	.19	.094	.31	.10	.14	.47	.60	.46	.0091	,25	.68	11
10.9	Glass	CYR	23269	00032	00096	.0059	,0029	.0094	0044	0062	.035	.045	.020	.00016	.0076	.030	.29
10.9	Glass	Сү	11272	.00032	.00096	.0059	.0029	.0094	.0044	.0062	.035	.045	.020	.00016	.0076	.030	.29
10.10	Ceramic (Gen. Purpose)	ск	11015	.0036	.0074	.034	.019	.056	.015	.015	.032	.048	.077	.0014	.049	.13	2.3
10.10	Ceramic (Gen. Purpose)	CKR	39014	.0036	.0074	.034	.019	.056	.015	.015	.032	.048	.077	.0014	.049	.13	2.3
10.11	Ceramic (Temp. Comp.)	CCR	20	.00078	.0022	.013	.0056	.023	.0077	.015	.053	.12	.046	.00039	.017	.065	.68
10.11	Ceramic Chip	COR	55681	.00078	.0022	.013	.0056	.023	.0077	.015	.053	.12	.046	.00039	.017	.065	.68
10.12	Tantalum, Solid	CSR	39003	.0018	.0039	.016	.0097	.028	.0091	.011	.034	.057	.055	.00072	.022	.066	1.0
10.13	Tantalum, Non-Solid	СІЯ	39006	.0061	.013	.069	.039	.11	.031	.061	.13	.29	.18	.0030	.089	.26	4.0
10,13	Tantalum, Non-Solid	a	3965	.0061	.013	.069	.039	.11	.031	.061	.13	.29	.18	.0030	.089	.26	4.0
10.14	Aluminum Oxide	CUR	39018	.024	.061	,42	.18	.59	.46	.55	2.1	2.6	1.2	.012	.49	1.7	21
10.15	Aluminum Dry	CE	62	.029	.081	.58	.24	.83	.73	.88	4.3	5.4	2.0	.015	.68	2.8	28
10.16	Variable, Ceramic	cv	81	.08	.27	1.2	.71	2.3	.69	1.1	6.2	12	4.1	.032	1.9	5.9	85
10.17	Variable, Piston	PC	14409	.033	.13	.62	.31	.93	.21	.28	2.2	3.3	2.2	.016	.93	3.2	37
10.18	Variable, Air Trimmer	टा	92	.080	.33	1.6	.87	3.0	1.0	1.7	9.9	19	6.1	.040	2.5	8.9	100
10.19	Variable, Vacuum	CG	23183	0.4	1.3	6. <u>7</u>	3.6	13	5.7	10	58	90	23	.20	•	•	•

NOTE:

1) * Not Normally used in this Environment 2) $T_A = Default Component Ambient Temperature (°C)$

	[Establishe	d Reliab				
Quality	S	R	P	<u> </u>	L	MIL-SPEC	Lower
	.030	.10	.30	1.0	3.0	3.0	10

MIL-HDBK-217F NOTICE 1

.

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:38Z Check the source to verify that this is the current version before use. Revision F

0	Part Type	MIL-	Env.→ G _B	GF	G _M	NS	NU	AIC	AIF	Auc	AUF	ARW	SF	M _E	ML	շլ
Section #	Part Type	M9 11	T _A (°C)→ 30	40	45	40	45	55	55	70	70	55	30	45	55	40
	INDUCTIVE DEVICES							•				<u> </u>				
11.1	Low Power Pulse XFMR	T-21038	.0035	.023	.049	.019	.065	.027	.037	.041	.052	.11	.0018	.053	.16	2.3
11.1	Audio XFMR	T-27	.0071	.046	.097	.038	.13	.055	.073	.081	.10	.22	.0035	.11	.31	4.7
11.1	High Pwr. Pulse and Pwr. XFMR, Filter	T-27	.023	.16	.34	.13	.45	.21	.27	.35	.45	.82	.011	.37	1.2	16
11.1	RF XFMR	T-55631	.028	.18	.39	.15	.52	.22	.29	.33	.42	.88	.014	.42	1.2	19
11.2	RF Coils, Fixed or Molded	C-15305 C-39010	.0017	.0073	.023	.0091	.031	.011	.015	.016	.022	.052	.00083	.025	.073	1.1
11.2	RF Coils, Variable	C-15305	.0033	.015	.046	.018	.061	.022	.03	.033	.044	.10	.0017	.05	.15	2.2
	ROTATING DEVICES								_							
12.1	Motors .		1.6	2.4	3.3	2.4	3.3	7.1	7.1	31	31	. 7.1	1.6	•	•	•
12.2	Synchros		.07	.20	1.5	.70	2.2	.78	1.2	7.9	12	5.1	.035	1.7	7.1	68
12.2	Resolvers ELAPSED TIME METERS		.11	.30	2.2	1.0	3.3	1.2	1.8	12	18	7.6	.053	2.6	11	100
12.3	ETM-AC		10	20	120	70	180	50	80	160	250	260	5.0	140	380	•
12.3	ETM-Inverter Driver		15	30	180	105	270	75	120	240	375	390	7.5	210	570	•
13.3	ETM-Commutator DC		40	80	480	280	720	200	320	640	1000	1040	20	560	1520	•
	RELAYS															
13.1	General Purpose		.13	.28	2.1	1.1	3.8	1.1	1.4	1.9	2.1	7.0	.066	3.5	10	*
13.1	Contactor, High Current		.43	.89	6.9	3.6	12	3.4	4.4	6.2	6.7	22	.21	11	32	٠
13.1	Latching		.13	.28	2.1	1.1	3.8	1.1	1.4	1.9	2.1	7.0	.066	3.5	10	•
13.1	Reed		.11	.23	1.8	.92	3.3	.96	1.2	2.1	2.3	6.3	.054	3.0	9.0	•
13.1	Thermal, Bi-metal		.29	.60	4.6	2.4	8.2	2.3	2.9	4.1	4.5	15	.14	7.6	22	•
13.1	Meter Movement		.88	1.8	14	7.4	26	7.1	9.1	13	14	46	.44	24	67	•
13.2	Solid State		.40	1.2	4.8	2.4	6.8	4.8	7.6	8.4	13	9.2	.16	4.8	13	24
13.2	Hybrid and Solid State Time Delay		.50	1.5	6.0	3.0	8.5	6.0	9.5	11	16	12	.20	6.0	17	30
	SWITCHES															
14.1	Toggle or Pushbutton		.0010	.0030	.018	.0080	.029	.010	.018	.013	.022	.046	.0005	.025	.067	1.
14.2	Sensitive	S-8805	.15	.44	2.7	1.2	4.3	- 1.5	2.7	1.9	3.3	6.8	.074	3.7	9.9	18
14.3	Rotary Wafer	S-3786	.33	.99	5.9	2.6	9.5	3.3	5.9	4.3	7.2	15	,16	8.2	22	39
14.4	Thumbwheel	S-22710	.56	1.7	10	4.5	16	5.6	10	7.3	12	26	.28	14	38	67
14.5	Circuit Breaker, Thermal	C-83383	.11	.23	1.7	.91	3.1	.80	1.0	1.3	1.4	5.2	.057	2.8	7.5	N/
14.5	Circuit Breaker, Magnetic	C-55629	.060	.12	.90	.48	1.6	.42	.54	.66	.72	2.8	.030	1.5	4.0	N/
45.4	CONNECTORS		Dati	0.14	.12	.069	.20	.059	.098	.23	.34	07	0054	16	.53	
15.1	Circular/Rack/Panel		0.011	0.14			.20					.37	.0054	.16		6.
15.1	Coaxial		.012	.015	.13	.075 .035	.21	.060	.10	.22	.32	.38	.0061	.16	.54	7. 3.
15.2	Printed Circuit Board Connector		.0054	.021	.063	.035	.10	.059	.11	.085	.16	.19	.0027	.078	.27	3
15.3	IC Sockets		.0019	.0058	.027	.012	.035	.015	.023	.021	.025 .	.048	.00097	.027	.070	1.
16.1	Interconnection		.053	.11	.37	.69	.27	.27	.43	.85	1.5	1.0	.027	.53	1.4	2

APPENDIX A:

PARTS COUNT

NOTE: 1) * Not normally used in this environment 2) T_A = Default Component Ambient Temperature (°C)

Supersedes page A-9 of Revision F

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:38Z Check the source to verify that this is the current version before use.

A-9

2
\geq
- i k
T
=
Ú.
<u> </u>
\sim
N
~1
2

~

APPENDIX A: PARTS COUNT

Generic Fallure Rate, λ_{α} (Fallures/10⁶ Hours) for Miscellaneous Parts

						<u>'g</u>	0103/10	nours)	or misce		1 4/13					
Section #	Part Type Dielectric	MIL-	Env.→ G _B T _A (°C)→ 30	G _F 40	G _M 45	N _S 40	N _U 45	А _{ІС} 55	А _{IF} 55	AUC 70	A _{UF} 70	A _{RW} ' 55	S _F 30	М _Р 45	м _L 55	در 40
	SINGLE CONNECTIONS															
17.1	Hand Solder, w/o Wrapping		.0026	.0052	.018	.010	.029	.010	.016	.016	.021	.042	.0013	.023	.062	1.1
17.1	Hand Solder, w/Wrapping	ſ	.00014	.00028	.00098	.00056	.0015	.00056	.00084	.00084	.0011	.0022	.00007	.0013	.0034	.059
17.1	Crimp		.00026	.00052	.0018	.0010	.0029	.0010	.0016	.0016	.0021	.0042	.00013	.0023	.0062	.11
17.1	Weld			~.000100	:000350	.000200	.000550	.000200	.000300	.000300	.000400	.0008000	.000025	.000450	.001200	.021000
17.1	Solderless Wrap	ļ	.0000035	.000007	.000025	.000014	.000039	.000014	.000021	.000021	.000028	.000056	.0000018	.000031	.000084	.0015
17.1	Clip Termination		.00012	.00024	.00084	.00048	.0013	.00048	.00072	.00072	.00096	.0019	.00006	.0011	.0029	.050
17.1	Reflow Solder		.000069	.000138	.000483	.000276	.000759	.000276	.000414	,000414	.000552	.001104	.000035	.000621	.001656	.02898
	METERS, PANEL															
18.1	DC Ammeter or Voltmeter	M-10304	0.09	0.36	2.3	1.1	3.2	2.5	3.8	5.2	6.6	5.4	0.099	5.4	N/A	N/A
18.1	AC Ammeter or Voltmeter	M-10304	0.15	0.61	3.8	1.8	5.4	4.3	6.4	8.9	11	9.2	0.17	9.2	N/A	<u></u> N/A
19,1	Quartz Crystals	C-3098	.032	.096	.32	.19	.51	.38	.54	.70	.90	.74	.016	.42	1.0	16
20.1	Lamps, Incandescent, AC		3.9	7.8	12	12	16	16	16	19	23	19	2.7	16	23	100
_ 20.1	Lamps, Incandescent, DC		13	26	38	38	51	51	51	64	77	64	9.0	51	77	350
	ELECTRONIC FILTERS															
21.1	Ceramic-Ferrite	F-15733	.022	.044	.13	.088	.20	.15	.20	.24	.29	.24	.018	.15	.33	2.6
21.1	Discrete LC Comp.	F-15733	.12	.24	.72	.48	1.1	.84	1.1	1.3	1.6	1.3	.096	.84	1.8	14
21.1	Discrete LC & Crystal Comp.	F-18327	.27	.54	1.6	1.1	2.4	1.9	2.4	3.0	3.5	3.0	.22	<u>1.9</u>	4.1	32
22.1	FUSES		.010	.020	.080	.050	.11	.090	.12	.15	.18	.16	,009	.10	.21	2.3

- ----

- -

A-10

_ ...

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:38Z Check the source to verify that this is the current version before use.

Section #	Part Type	Established Reliability	MIL-SPEC	Non-MIL
11.1, 11.2	Inductive Devices	.25*	1.0	10
12.1, 12.2, 12.3	Rotating Devices	N/A	N/A	N/A
13.1	Relays, Mechanical	.60	3.0	9.0
13.2	Relays, Solid State and Time Delay (Hybrid & Solid State)	N/A	1.0	4
14.1, 14.2	Switches, Toggle, Pushbutton, Sensitive	N/A	1.0	20
14.3	Switches, Rotary Wafer	N/A	1.0	50
14.4	Switches, Thumbwheel	N/A	[·] 1.0	10
14.5	Circuit Breakers, Thermal	N/A	1.0	8.4
15.1, 15.2, 15.3	Connectors	N/A	1.0	2.0
16.1	Interconnection Assemblies	N/A	1.0	2.0
17.1	Connections	N/A	N/A	N/A
18.1	Meters, Panel	N/A	1.0	3.4
19.1	Quartz Crystals	N/A	1.0	2.1 ⋅
20.1	Lamps, Incandescent	N/A	N/A	N/A
21.1	Electronic Filters	N/A	1.0	2.9
22.1	Fuses	N/A	N/A	N/A

ŧ

π_{O} Factor for Use with Section 11-22 Devices

* Category applies only to MIL-C-39010 Coils.

1

APPENDIX A: PARTS COUNT

A-11

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:38Z Check the source to verify that this is the current version before use.

Section #	Part Type	λь	^π T	^π M	πs	πC	^π Α	۳R	Comments
5.0	MICROCIRCUITS	_	All Defa	ults provi	ded with	λ _g Table	•		
	DIODES								
6.1	General Purpose Analog	.0038			.42	1.0			Voltage Stress = .7, Metallurgically Bonded
6.1	Switching	.001			.42	1.0			Voltage Stress = .7, Metallurgically Bonded Contacts
6.1	Fast Recovery Power Rectifier	.069			.42	1.0			Voltage Stress = .7, Metallurgically Bonded
6.1	Transient Suppressor/Varistor	.0031			1.0	1.0			Metallurgically Bonded Contacts
6.1	Power Rectifier	.003			.42	1.0			Voltage Stress = .7, Metallurgically Bonded Contacts
6.1	Voltage Ref/Reg. (Avalanche & Zener)	.002			1.0	1.0			Metallurgically Bonded Contacts
6.1 6.2	Current Regulator Si Impatt (≤ 35 GHz)	.0034 .22			1.0	1.0	1.0	1.0	Metallurgically Bonded Contacts
6.2	Gunn/Bulk Effect	.18					1.0	1.0	
6.2 6.2	Tunnel and Back PIN	.0023 .0081					1.0 1.0	1.0 2.0	Rated Power = 1000W
6.2	Schottky Barrier and Point Contact (200 MHz ≤ frequency ≤ 35 GHz)	.027			1.0	1.0			
6.2	Varactor	.0025			2.5	1.0		1.0	Muttiplier Application Voltage Stress = .7, Rated Forward Current = 1 Am
6.10	Thyristor/SCR	.0022			.51			1.0	
	TRANSISTORS						_		
6.3	NPN/PNP (f < 200 MHz)	.00074			.21		.70	.77	Voltage Stress = .5, Switching Application, Rated Power = .5W
6.3	Power NPN/PNP (f < 200 MHz)	.00074			.54		1.5	5.5	Voltage Stress = .8, Linear Application, Rated Power = 100W
6.4 6.9	Si FET (f ≤ 400 MHz) Si FET (f > 400 MHz)	.012					.70		MOSFET, Small Signal Switching MOSFET
6.8	GaAs FET ($P < 100 \text{ mW}$)	.052		1.0			1.0		Low Noise Application, $1 \le f \le 10$ GHz, Input and Output Matching
6.8	GaAs FET (P ≥ 100 mW)	.13		1.0			1.0		Pulsed Application, 5 GHz, 1W Average Output Power, Input and Output Matching
6.5	Unijunction	.0083							Voltage Stress = .7, Rated Power = .5W
6.6	RF, Low Noise, Bipolar (f > 200 MHz, P < 1W)	.18			.39		_	.77	
6.7	RF, Power (P ≥ 1W)	.08	.36	1.0			1.6		1 GHz, 100W, T _J = 130°C for all Environments, Voltage Stress = .45, Gold Metallization, Pulsed
									Application, 20% Duty Factor, Input and Output Matching

Default Parameters for Discrete Semiconductors

MIL-HDBK-217F NOTICE 1

- - --

.

Section #	Part Type	λ _b	^π T	^π M	^π s	π _C	^π A	^π R	Comments
6.11 6.11 6.11 6.12 6.13	OPTO-ELECTRONICS Photodetector Opto-Isolator Emitter Alphanumeric Display Laser Diode, GaAs/Al GaAs	.0055 .013 .00023 .0030 3.23			1.0 (π _Ρ)		.77		Phototransistor Phototransistor, Single Device LED 7 Character Segment Display For Environments with $T_J > 75^{\circ}C$, assume $T_J = 75^{\circ}C$, Forward Peak Current = .5 Amps ($\pi_j = .62$),
6.13	Laser Diode, In/GaAs/In GaAsP	5.65			1.0 (π _p)		.77		Pulsed Application, Duty Cycle = .6, Pr/Ps = .5 (π_p = 1) For Environments with T _J > 75°C, assume T _J = 75°C, Forward Peak Current = .5 Amps (π_i = .62), Pulsed Application, Duty Cycle = .6, Pr/Ps = .5 (π_p = 1)

.

Supersedes page A-13 of Revision F

. . . .

APPENDIX A: PARTS COUNT

.

MIL-HDBK-217F NOTICE 1

Default	Parameters	for	Resistors

Section					T		
#	Part Type	Style	MIL-R-SPEC	_ [#] R	πv	^π TAPS	Comments
9.1	Composition	RCR	39008	1.1			Pwr. Stress = .5, 1M ohm
9.1	Composition	RC	11	1.1			Pwr. Stress = .5, 1M ohm
9.2	Film, Insulated	RLR	39017	1.1]	Pwr. Stress = .5, 1M ohm
9.2	Film, Insulated	RL	22684	1.1		1	Pwr. Stress = .5, 1M ohm
9.2	Film, RN (R, C or N)	RNR	55182	1.1			Pwr. Stress = .5, 1M ohm
9.2	Film	RN	10509	1.1	i i		Pwr. Stress = .5, 1M ohm
9.3	Film, Power	RD	11804	1.0			Pwr. Stress = .5, 100 ohm
9.4	Fixed, Network	.RZ	83401		ļ		Pwr. Stress = .5, T _C = T _A + 28°C, 10 Film Resistors
9.5	Wirewound, Accurate	RBR	39005	1.7			Pwr. Stress = .5,100K ohms
9.5	Wirewound, Accurate	RB	93	1.7		1	Pwr. Stress = .5. 100K ohms
9.6	Wirewound, Power	RWR	39007	1.1	Ì		Pwr. Stress = .5, 5K ohms, RWR 84
9.6	Wirewound, Power	RW	26	1.0			Pwr. Stress = .5, 5K ohms, RW10
9.7	Wirewound, Power, Chassis Mounted	RER	39009	1,1			Pwr. Stress = .5, Noninductively Wound, 5K ohm, RER 55
9.7	Wirewound, Power, Chassis Mounted	RE	18546	1.1			Pwr. Stress = .5, MIL-R-18546, Char. N, 5K ohm, RE75
9.8 (Thermistor	RTH	23648			í í	Disk Type
9.9	Wirewound, Variable	RTR	39015	1.4	1.1	1.0	Pwr. Stress = .5, 5K ohms, 3 Taps, Voltage Stress = .1
9.9	Wirewound, Variable	মা	27208	1.4	1.1	1.0	Pwr. Stress = .5, 3 Taps, Voltage Stress = .1
9.10	Wirewound, Variable, Precision	RR	12934	1.4	1.1	1.0	Pwr. Stress = .5, Construction Class 5 ($\pi_c = 1.5$),
9.11	Wirewound, Variable, Semiprecision	RA.	19	1.4	1.0	1.0	50K ohm, 3 Taps, Voltage Stress = .1 Pwr. Stress = .5, 5K ohms, 3 Taps, Voltage Stress = .5
9.11	Wirewound, Semiprecision	RK	39002	1.4	1.0	1.0	Dur Strago - E. O. Tana Malu na Olivia - E.
9.12	Wirewound, Variable, Power	RP	22	1.4	1.0	1.0	Pwr. Stress = .5, 3 Taps, Voltage Stress = .5 Pwr. Stress = .5, 3 Taps, Voltage Stress = .5, Unenclosed ($\pi_c = 1$)
9.13	Nonwirewound, Variable	RJR	39035	1.2	1.0	1.0	Pwr. Stress = .5, 200K ohm, 3 Taps, Voltage Stress = .5
9.13	Nonwirewound, Variable	RJ	22097	1.2	1.0	1.0	Pwr. Stress = .5, 200K ohm, 3 Taps, Voltage Stress = .5
9.14	Composition, Variable	RV	94	1.2	1.0	1.0	Pwr. Stress = .5, 200K ohm, 3 Taps, Voltage Stress = .5
9.15	Nonwirewound, Variable Precision	RQ	39023	1.2	1.0	1.0	Pwr. Stress = .5, 200K ohm, 3 Taps, Voltage Stress = .5
9.15	Film, Variable	RVC	23285	1.2	1.0	1.0	Pwr. Stress = .5, 200K ohm, 3 Taps, Voltage Stress = .5

· ----

- ----

.

Section	Part Type or			<u> </u>	for Capaci Temp.	
#	Dielectric	Style	MIL-C-SPEC	πCV	Rating	Comments
10.1	Paper, By-Pass	CP	25	1.0	125	Voltage Stress = .5, .15 µF
10.1	Paper, By-Pass	CA	12889	1.0	85	Voltage Stress = .5, .15 μF
10.2	Paper/Plastic, Feed-through	CZR	11693	1.0	125	Voltage Stress = .5, .061 µF
10.3	Paper/Plastic Film	CPV	14157	1.0	125	Voltage Stress = .5, .027 µF
10.3	Paper/Plastic Film	COR	19978	1.0	125	Voltage Stress = .5, .033 µF
10.4	Metallized Paper/Plastic	CHR	39022	1.0	125	Voltage Stress = .514 µF
10.4	Metallized Plastic/Plastic	СН	18312	1.0	125	Voltage Stress = .5, .14 µF
10.5	Metallized Paper/Plastic	CFR	55514	1.0	125	Voltage Stress = .5, .33 μF
10.6	Metallized Plastic	CRH	83421	1.0	125	Voltage Stress = .5, .14 µF
10.7	MICA (Dipped or Molded)	CMR	39001	1.0	125	Voltage Stress = .5, 300 pF
10.7	MICA (Dipped)	C CM	5	1.0	125	Voltage Stress = .5, 300 pF
10.8	MICA (Button)	CB	10950	1.0	150	Voltage Stress = .5, 160 pF
10.9	Glass	CYR	23269	1.0	125	Voltage Stress = .5, 30 pF
10.9	Glass	CY	11272	1.0	125	Voltage Stress = .5, 30 pF
10.10	Ceramic (Gen, Purpose)	CK	11015	1.0	125	Voltage Stress = .5, 3300 pF
10.10	Ceramic (Gen, Purpose)	CKR	39014	1.0	125	Voltage Stress = .5, 3300 pF
10.11	Ceramic (Temp. Comp.)	CCR	20	1.0	125	Voltage Stress = .5, 81 pF
10.11	Ceramic Chip	COA	55681	1.0	125	Voltage Stress = .5, 81 pF
10.12	Tantalum, Solid	CSR	39003	1.0	125	Voltage Stress = .5, 1.0 μF, .6 ohms/volt, series
10.12						resistance, $\pi_{SR} = .13$
10.13	Tantalum, Non-Solid	CLR	39006	1.0	125	Voltage Stress = .5, Foil, Hermetic, 20 μ F, π_c = 1
10.13	Tantalum, Non-Solid	a	3965	1.0	125	Voltage Stress = .5, Foil, Hermetic, 20 μ F, π_c = 1
10.14	Aluminum Oxide	CUR	39018	1.3	125	Voltage Stress = .5, 1700 μF
10.15	Aluminum Dry	CE	62	1.3	85	Voltage Stress ≃ .5, 1600 µF
10.16	Variable, Ceramic	l cv	81		85	Voltage Stress = .5
10.17	Variable, Piston	PC	14409		125	Voltage Stress = .5
10.18	Variable, Air Trimmer	l cĩ	92		85	Voltage Stress = .5
10.19	Variable, Vacuum	l cc	23183	1	85	Voltage Stress = .5, Variable Configuration

-

.

۰.

.

....

.. · ·

APPENDIX A: PARTS COUNT

A-15

Section #	Part Type	MIL-SPEC	πc	^π сүс	π _F	Comments
	INDUCTIVE					
11.1	Low Pwr. Pulsed, XFMR	MIL-T-21038				Max. Rated Temp. = 130°C, ΔT = 10°C
11.1	Audio XFMR	MIL-T-27				Max. Rated Temp. = 130°C, ΔT = 10°C
11.1	High Pwr. Pulse and Pwr. XFMR, Filter	MIL-T-27				Max. Rated Temp. = 130°C, ΔT = 30°C
11.1	RF Transformers	MIL-T-55631				Max. Rated Temp. = 130°C, ΔT = 10°C
11.2	RF Coils, Fixed or Molded	MIL-C-15305	1			Max. Rated Temp. = 125°C, ΔT = 10°C
11.2	RF Coils, Variable	MIL-C-15305	2			Max. Rated Temp., = 125°C, ΔT = 10°C
	ROTATING DEVICES		:			
12.1	Motors		1	1]	t = 15,000 hours (Assumed Replacement Time)
12.2	Synchros					T _F ≕ T _A + 40, Size 10 - 16, 3 Brushes
12.2	Resolvers			-		T _F ≕ T _A + 40, Size 10 - 16, 3 Brushes
12.3	Elapsed Time Meters (ETM) ETM-AC		-			
12.0	EINFAC					Op. Temp/Rated Temp. = .5 (π_T = .5)
12.3	ETM-Inverter Driver					Op. Temp/Rated Temp. = .5 (π_T = .5)
12.3	ETM-Commutater DC					Op. Temp/Rated Temp. = .5 (π_T = .5)
	RELAYS					
13.1	General Purpose		3	1	5	Max. Rated Temp. = 125°C , DPDT, MIL-SPEC, 10 Cycles/Hour,
						4 Amp., General Purpose, Balanced Armature, Resistive Load,
						s = .5
13.1	Contactor, High Current		3	1	5	Max. Rated Temp. = 125°C, DPDT, MIL-SPEC, 10 Cycles/Hour, 600 Amp., Solenoid, Inductive Load, s = .5
13.1	Latching		3	1	5	Max. Rated Temp. = 125° C, MIL-SPEC, 4 Amp., Mercury Wetted, 10 Cyles/Hour, DPDT, Resistive Load, s = $.5$
13.1	Reed		1	2	6	Max. Rated Temp. = 85°C, MIL-SPEC, Signal Current, Dry Reed, 20 Cycles/Hour, SPST, Resistive Load, s = .5
13.1	Thermal Bi-Metal		1	1	10	Max. Rated Temp. = 125°C, MIL-SPEC, Bi-Metal, 10 Cycles/Hour, SPST, Inductive Load, 5 Amp., s = .5
13.1	Meter Movement		1	1	100	Max. Rated Temp. = 125°C, MIL-SPEC, Polarized Meter Movement, 10 Cycles/Hour, SPST, Resistive Load, s = .5
13.2	Solid State	MIL-R-28750				No Defaults
13.2	Time Delay Hybrid and Solid State	MIL-R-83726				No Defaults

Default Parameters for Inductive and Electromechanical Parts

MIL-HDBK-217F NOTICE 1

Supersedes page A-16 of Revision F Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:38Z Check the source to verify that this is the current version before use.