NOT MEASUREMENT SENSITIVE

MIL-HDBK-217F 2 DECEMBER 1991

SUPERSEDING MIL-HDBK-217E, Notice 1 2 January 1990

MILITARY HANDBOOK

RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

AMSC N/A

FSC-RELI

DISTRIBUTION STATEMENT A: Approved for public release; distribution unlimited.

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

W1 = Weight of specimen afte

DEPARTMENT OF DEFENSE WASHINGTON DC 20301

RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

- 1. This standardization handbook was developed by the Department of Defense with the assistance of the military departments, federal agencies, and industry.
- 2. Every effort has been made to reflect the latest information on reliability prediction procedures. It is the intent to review this handbook periodically to ensure its completeness and currency.
- Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Rome Laboratory, AFSC, ATTN: ERSS, Griffiss Air Force Base, New York 13441-5700, by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

CONTENTS

SECTION	1: SCOPE	
1.1	Purpose	1-1
1.2	Application	1-1
1.3	Computerized Reliability Prediction	1-1
SECTION	2: REFERENCE DOCUMENTS	2-1
5201101		2-1
SECTION	3: INTRODUCTION	
3.1	Reliability Engineering	3-1
3.2	The Role of Reliability Prediction	3-1
3.3	Limitations of Reliability Predictions	3-2
3.4	Part Stress Analysis Prediction	3-2
SECTION	4: RELIABILITY ANALYSIS EVALUATION	4-1
SECTION	5: MICROCIRCUITS, INTRODUCTION	5-1
5.1	Gate/Logic Arrays and Microprocessors.	5-3
5.1	Memories	5-3
5.2	VHSIC/VHSIC Like	5-7
5.3	GaAs MMIC and Digital Devices	5-8
5.5	Hybrids	5-9
5.6	SAW Devices	5-10
5.0 5.7	Magnetic Bubble Memories	5-10
5.7		5-13
	π_{T} Table for All	
5.9	C2 Table for All	5-14
5.10	π_{E} , π_{L} and π_{Q} Tables for All	5-15
5.11	TJ Determination, (All Except Hybrids)	5-17
5.12	T _J Determination, (For Hybrids)	5-18
5.13	Examples	5-20
SECTION	6: DISCRETE SEMICONDUCTORS	
6.0	Discrete Semiconductors, Introduction	6-1
6.1	Diodes, Low Frequency	6-2
6.2	Diodes, High Frequency (Microwave, RF)	6-4
6.3	Transistors, Low Frequency, Bipolar	6-6
6.4	Transistors, Low Frequency, Si FET	6-8
6.5	Transistors, Unijunction	6-9
6.6	Transistors, Low Noise, High Frequency, Bipolar	6-10
6.7	Transistors, High Power, High Frequency, Bipolar	6-12
6.8	Transistors. High Frequency, GaAs FET	6-14
6.9	Transistors, High Frequency, Si FET	6-16
6.10	Thyristors and SCRs	6-17
6.11	Optoelectronics, Detectors, Isolators, Emitters	6-19
6.12	Optoelectronics, Alphanumeric Displays	6-20
6.13	Optoelectronics, Laser Diode	6-21
6.14	T ₁ Determination	6-23
6.15	Example	6-25

** ** .= =

iii

CONTENTS

1

SECTION	7: TUBES	
7.1	All Types Except TWT and Magnetron	7-1
7.2	Traveling Wave	7-3
7.3	Magnetron	7-4
SECTION		
8.0	Introduction	8-1
8.1	Helium and Argon	
8.2	Carbon Dioxide, Sealed	8-3
8.3	Carbon Dioxide, Flowing	
8.4	Solid State, ND:YAG and Ruby Rod	8-5
SECTION	9: RESISTORS	~ ~
9.0	Introduction	9-1
9.1	Fixed, Composition (RCR, RC)	9-2
9.2	Fixed, Film (RLR, RL, RN (R,C, or N), RN)	9-3
9.3	Fixed, Film, Power (RD)	9-5 9-6
9.4	Network, Fixed, Film (RZ)	
9.5	Fixed, Wirewound (RBR, RB)	9-7
9.6	Fixed, Wirewound, Power (RWR, RW)	9-8
9.7	Fixed, Wirewound, Power, Chassis Mounted (RER, RE)	9-10
9.8	Thermistor (RTH)	9-12
9.9	Variable, Wirewound (RTR, RT)	9-13
9.10	Variable, Wirewound, Precision (RR)	9-15 9-17
9.11	Variable, Wirewound, Semiprecision (RA, RK)	
9.12	Variable, Wirewound, Power (RP)	9-19 9-21
9.13	Variable, Nonwirewound (RJ, RJR)	9-21
9.14	Variable, Composition (RV)	
9.15	Variable, Nonwirewound, Film and Precision (RQ, RVC)	9-25
9.16	Calculation of Stress Ratio for Potentiometers	9-27 9-29
9.17	Example	9-29
SECTION	10: CAPACITORS	
10.1	Fixed, Paper, By-Pass (CP, CA)	10-1
10.2	Fixed, Feed-Through (CZR, CZ)	
10.2	Fixed, Paper and Plastic Film (CPV, CQR and CQ)	
10.4	Fixed, Metallized Paper, Paper-Plastic and Plastic (CH, CHR)	10-7
10.5	Fixed, Plastic and Metallized Plastic	10-9
10.6	Fixed, Super-Metallized Plastic (CRH)	10-11
10.7	Fixed, MICA (CM, CMR)	10-12
10.8	Fixed, MICA, Button (CB)	10-14
10.9	Fixed, Glass (CY, CYR)	10-16
10.10	Fixed, Ceramic, General Purpose (CK, CKR)	10-18
10.11	Fixed, Ceramic, Temperature Compensating and Chip (CCR and CC, CDR)	10-20
10.12	Fixed, Electrolytic, Tantalum, Solid (CSR)	10-21
10.12	Fixed, Electrolytic, Tantalum, Non-Solid (CL, CLR)	10-22
10.14	Fixed, Electrolytic, Aluminum (CUR and CU)	10-24
10.15	Fixed, Electrolytic (Dry), Aluminum (CE)	10-26
10.16	Variable, Ceramic (CV).	10-27
10.17	Variable, Piston Type (PC)	10-28
10.18	Variable, Air Trimmer (CT)	10-29
10.19	Variable and Fixed, Gas or Vacuum (CG)	10-30
10.20	Example	10-32

:

.

CONTENTS

SECTION	11: INDUCTIVE DEVICES Transformers	11-1
11.2	Colls	11-3
11.3	Determination of Hot Spot Temperature	11-5
SECTION	12: ROTATING DEVICES	
12.1	Motors	12-1
12.2	Synchros and Resolvers	12-3
12.3	Elapsed Time Meters	12-4
12.4	Example	12-5
SECTION	13: RELAYS	
13.1	Mechanical	13-1
13.2	Solid State and Time Delay	13-3
13.2		10-0
	14: SWITCHES	
14.1	Toggle or Pushbutton	14-1
14.2	Basic Sensitive	14-2
14.3	Rotary	14-3
14.4	Thumbwheel	14-4
14.5	Circuit Breakers	14-5
SECTION	15: CONNECTORS	
15.1	General (Except Printed Circuit Board)	15-1
15.2	Printed Circuit Board	15-4
15.3	Integrated Circuit Sockets	15-6
SECTION		
16.1	Interconnection Assemblies with Plated Through Holes	16-1
SECTION	17: CONNECTIONS	
17.1	Connections	17-1
SECTION	18: METERS	
18.1	Meters, Panel	18-1
SECTION		
19.1	Quartz Crystals	19-1
SECTION		
	20: LAMPS Lamps	20-1
20.1	Lamps	20-1
20.1 SECTION	Lamps	
20.1 SECTION	Lamps	
20.1 SECTION 21.1	Lamps	
20.1 SECTION 21.1 SECTION	Lamps	21-1
20.1 SECTION 21.1 SECTION	Lamps	
20.1 SECTION 21.1 SECTION 22.1	Lamps 21: ELECTRONIC FILTERS Electronic Filters, Non-Tunable 22: FUSES Fuses	21-1
20.1 SECTION 21.1 SECTION 22.1 SECTION	Lamps	21-1 22-1
20.1 SECTION 21.1 SECTION 22.1 SECTION	Lamps 21: ELECTRONIC FILTERS Electronic Filters, Non-Tunable 22: FUSES Fuses	21-1
20.1 SECTION 21.1 SECTION 22.1 SECTION 23.1	Lamps	21-1 22-1
20.1 SECTION 21.1 SECTION 22.1 SECTION 23.1 APPENDIX	Lamps 21: ELECTRONIC FILTERS Electronic Filters, Non-Tunable 22: FUSES Fuses 23: MISCELLANEOUS PARTS Miscellaneous Parts A: PARTS COUNT RELIABILITY PREDICTION	21-1 22-1 23-1 A-1
20.1 SECTION 21.1 SECTION 22.1 SECTION 23.1 APPENDIX	Lamps	21-1 22-1 23-1
20.1 SECTION 21.1 SECTION 22.1 SECTION 23.1 APPENDIX APPENDIX	Lamps 21: ELECTRONIC FILTERS Electronic Filters, Non-Tunable 22: FUSES Fuses 23: MISCELLANEOUS PARTS Miscellaneous Parts A: PARTS COUNT RELIABILITY PREDICTION	21-1 22-1 23-1 A-1

CONTENTS

LIST OF TABLES

Table 3-1:	Parts with Multi-Level Quality Specifications	3-3
Table 3-2:	Environmental Symbol and Description	3-4
Table 4-1:	Reliability Analysis Checklist	4-1
Table 6-1:	Default Case Temperatures for All Environments (°C)	6-23
Table 6-2:	Approximate Thermal Resistance for Semiconductor Devices	
	in Various Package Sizes	6-24

LIST OF FIGURES

Figure 5-1:	Cross Sectional View of a Hybrid with a Single Multi-Layered Substrate	5-18
Figure 8-1:	Examples of Active Optical Surfaces	8-1
Figure 9-1:	MIL-R-39008 Derating Curve	9-1

.

. . .

101 -

-

.

---- 1

FOREWORD

This revision to MIL-HDBK-217 provides the following changes based upon recently completed studies (see Ref. 30 and 32 listed in Appendix C):

- 1. New failure rate prediction models are provided for the following nine major classes of microcircuits:
 - Monolithic Bipolar Digital and Linear Gate/Logic Array Devices
 - Monolithic MOS Digital and Linear Gate/Logic Array Devices
 - Monolithic Bipolar and MOS Digital Microprocessor Devices (Including Controllers)
 - Monolithic Bipolar and MOS Memory Devices
 - Monolithic GaAs Digital Devices
 - Monolithic GaAs MMIC Devices
 - Hybrid Microcircuits
 - Magnetic Bubble Memories
 - Surface Acoustic Wave Devices

This revision provides new prediction models for bipolar and MOS microcircuits with gate counts up to 60,000, linear microcircuits with up to 3000 transistors, bipolar and MOS digital microprocessor and coprocessors up to 32 bits, memory devices with up to 1 million bits, GaAs monolithic microwave integrated circuits (MMICs) with up to 1,000 active elements, and GaAs digital ICs with up to 10,000 transistors. The C₁ factors have been extensively revised to reflect new technology devices with improved reliability, and the activation energies representing the temperature sensitivity of the dice (π_T) have been changed for MOS devices and for memories. The C₂ factor remains unchanged from the previous Handbook version,

but includes pin grid arrays and surface mount packages using the same model as hermetic, solder-sealed dual in-line packages. New values have been included for the quality factor (π_Q), the learning factor (π_L), and the environmental factor (π_E). The model for hybrid microcircuits has been revised to be simpler to use to delete the temperature dependence of the seal and interpendent failure rate contributions, and the

use, to delete the temperature dependence of the seal and interconnect failure rate contributions, and to provide a method of calculating chip junction temperatures.

- 2. A new model for Very High Speed Integrated Circuits (VHSIC/VHSIC Like) and Very Large Scale Integration (VLSI) devices (gate counts above 60,000).
- 3. The reformatting of the entire handbook to make it easier to use.

.

- 4. A reduction in the number of environmental factors (π_{E}) from 27 to 14.
- 5. A revised failure rate model for Network Resistors.
- 6. Revised models for TWTs and Klystrons based on data supplied by the Electronic Industries Association Microwave Tube Division.

1 -

.

1.0 SCOPE

1.1 Purpose - The purpose of this handbook is to establish and maintain consistent and uniform methods for estimating the inherent reliability (i.e., the reliability of a mature design) of military electronic equipment and systems. It provides a common basis for reliability predictions during acquisition programs for military electronic systems and equipment. It also establishes a common basis for comparing and evaluating reliability predictions of related or competitive designs. The handbook is intended to be used as a tool to increase the reliability of the equipment being designed.

1.2 Application - This handbook contains two methods of reliability prediction - "Part Stress Analysis" in Sections 5 through 23 and "Parts Count" in Appendix A. These methods vary in degree of information needed to apply them. The Part Stress Analysis Method requires a greater amount of detailed information and is applicable during the later design phase when actual hardware and circuits are being designed. The Parts Count Method requires less information, generally part quantities, quality level, and the application environment. This method is applicable during the early design phase and during proposal formulation. In general, the Parts Count Method will usually result in a more conservative estimate (i.e., higher failure rate) of system reliability than the Parts Stress Method.

1.3 Computerized Reliability Prediction - Rome Laboratory - ORACLE is a computer program developed to aid in applying the part stress analysis procedure of MIL-HDBK-217. Based on environmental use characteristics, piece part count, thermal and electrical stresses, subsystem repair rates and system configuration, the program calculates piece part, assembly and subassembly failure rates. It also flags overstressed parts, allows the user to perform tradeoff analyses and provides system meantime-to-failure and availability. The ORACLE computer program software (available in both VAX and IBM compatible PC versions) is available at replacement tape/disc cost to all DoD organizations, and to contractors for application on specific DoD contracts as government furnished property (GFP). A statement of terms and conditions may be obtained upon written request to: Rome Laboratory/ERSR, Gritflss AFB, NY 13441-5700.

2.0 REFERENCE DOCUMENTS

This handbook cites some specifications which have been cancelled or which describe devices that are not to be used for new design. This information is necessary because some of these devices are used in so-called "off-the-shell" equipment which the Department of Defense purchases. The documents cited in this section are for guidance and information.

SPECIFICATION	SECTION #	TITLE
MIL-C-5	10.7	Capacitors, Fixed, Mica-Dielectric, General Specification for
MIL-R-11	9.1	Resistor, Fixed, Composition (Insulated) General Specification for
MIL-R-19	9.11	Resistor, Variable, Wirewound (Low Operating Temperature) General Specification for
MIL-C-20	10.11	Capacitor, Fixed, Caramic Dielectric (Temperature Compensating) Established and Nonestablished Reliability, General Specification for
MIL-R-22	9.12	Resistor, Wirewound, Power Type, General Specification for
MIL-C-25	10.1	Capacitor, Fixed, Paper-Dielectric, Direct Current (Hermetically Sealed in Metal Cases), General Specification for
MIL-R-26	9.6	Resistor, Fixed, Wirewound (Power Type), General Specification for
MIL-T-27	11.1	Transformer and Inductor (Audio, Power, High Power, High Power Pulse), General Specification for
MIL-C-62	10.15	Capacitor, Fixed Electrolytic (DC, Aluminum, Dry Electrolyte, Polarized), General Specification for
MIL-C-81	10.16	Capacitor, Variable, Ceramic Dielectric (Trimmer), General Specification for
MIL-C-92	10.18	Capacitor, Variable, Air Dielectric (Trimmer), General Specification for
MIL-R-93	9.5	Resistor, Fixed, Wirewound (Accurate), General Specification for
MIL-R-94	9.14	Resistor, Variable, Composition, General Specification for
MIL-V-95	23.1	Vibrator, Interrupter and Self-Rectifying, General Specification for
W-L-111	20.1	Lamp, Incandescent Ministure, Tungsten Filament
W-C-375	14.5	Circuit Breaker, Molded Case, Branch Circuit and Service
W-F-1726	22.1	Fuse, Cartridge, Class H (This covers renewable and nonrenewable)
W-F-1814	22.1	Fuse, Cartridge, High Interrupting Capacity
MIL-C-3098	19.1	Crystal Unit, Quartz, General Specification for
Mil-C-3607	15.1	Connector, Coaxial, Radio Frequency, Series Pulse, General Specifications for
MIL-C-3643	15.1	Connector, Coaxial, Radio Frequency, Series NH, Associated Fittings, General Specification for
MIL-C-3650	15.1	Connector, Coaxial, Radio Frequency, Series LC

. .

....

1

.

~~

10

2.0 REFERENCE DOCUMENTS

SPECIFICATION	SECTION #	TILE
MIL-C-36 55	15.1	Connector, Plug and Receptacle, Electrical (Coaxial Series Twin) and Associated Fittings, General Specification for
MIL-C-3767	15.1	Connector, Plug and Receptacle (Power, Bladed Type) General Specification for
MIL-S-3786	14.3	Switch, Rotary (Circuit Selector, Low-Current (Capacity)), General Specification for
MIL-C-3950	14.1	Switch, Toggle, Environmentally Sealed, General Specification for
MIL-C-3965	10.13	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum, General Specification for
MIL-C-5015	15.1	Connector, Electrical, Circular Threaded, AN Type, General Specification for
MIL-F-5372	22.1	Fuse, Current Limiter Type, Aircraft
MIL-R-5757	13.1	Relay, Electrical (For Electronic and Communication Type Equipment), General Specification for
MIL-R-6106	13.1	Relay, Electromagnetic (Including Established Reliability (ER) Types), General Specification for
MIL-L-6363	20.1	Lamp, Incandescent, Aviation Service, General Requirement for
MIL-S-8805	14.1, 14.2	Switches and Switch Assemblies, Sensitive and Push, (Snap Action) General Specification for
MIL-S-8834	14.1	Switches, Toggle, Positive Break, General Specification for
MIL-M-10304	18.1	Meter, Electrical Indicating, Panel Type, Ruggedized, General Specification for
M1L-R-10509	9.2	Resistor, Fixed Film (High Stability), General Specification for
MIL-C-10950	10.8	Capacitor, Fixed, Mica Dielectric, Button Style, General Specification for
MIL-C-11015	10.10	Capacitor, Fixed, Ceramic Dielectric (General Purpose), General Specification for
MIL-C-11272	10.9	Capacitor, Fixed, Glass Dielectric, General Specification for
MIL-C-11693	10.2	Capacitor, Feed Through, Radio Interference Reduction AC and DC, (Hermetically Sealed in Metal Cases) Established and Nonestablished Reliability, General Specification for
MIL-R-11804	9.3	Resistor, Fixed, Film (Power Type), General Specification for
MiL-C-12889	10.1	Capacitor, By-Pass, Radio - Interference Reduction, Paper Dielectric, AC and DC, (Hermetically Sealed in Metallic Cases), General Specification for
MIL-R-12934	9.10	Resistor, Variable, Wirewound, Precision, General Specification for

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

. .

2.0 REFERENCE DOCUMENTS

. . . .

. . .

SPECIFICATION	SECTION #	ITTLE
MIL-C-14157	10.3	Capacitor, Fixed, Paper (Paper Plastic) or Plastic Dielectric, Direct Current (Hermetically Sealed in Metal Cases) Established Reliability, General Specification for
MIL-C-14409	10.17	Capacitor, Variable (Piston Type, Tubular Trimmer), General Specification for
MIL-F-15160	22.1	Fuse, Instrument, Power and Telephone
MIL-C-15305	11.2	Coil, Fixed and Variable, Radio Frequency, General Specification for
MIL-F-15733	21.1	Filter, Radio Interference, General Specification for
MIL-C-18312	10.4	Capacitor, Fixed, Metallized (Paper, Paper Plastic or Plastic Film) Dielectric, Direct Current (Hermetically Sealed in Metal Cases), General Specification for
MIL-F-18327	21.1	Filter, High Pass, Low Pass, Band Pass, Band Suppression and Dual Functioning, General Specification for
MIL-R-18546	9.7	Resistor, Fixed, Wirewound (Power Type, Chassis Mounted), General Specification for
MiL-S-19500	6.0	Semiconductor Device, General Specification for
MIL-R-19523	13.1	Relay, Control, Naval Shipboard
MIL-R-19648	13.1	Relay, Time, Delay, Thermal, General Specification for
MIL-C-19978	10.3	Capacitor, Fixed Plastic (or Paper-Plastic) Dielectric (Hermetically Sealed in Metal, Ceramic or Glass Cases), Established and Nonestablished Reliability, General Specification for
MIL-T-21038	11.1	Transformer, Pulse, Low Power, General Specification for
MIL-C-21097	15.2	Connector, Electrical, Printed Wiring Board, General Purpose, General Specification for
MIL-R-22097	9.13	Resistor, Variable, Nonwirewound (Adjustment Types), General Specification for
MIL-R-22684	9.2	Resistor, Fixed, Film, Insulated, General Specification for
MIL-S-22710	14.4	Switch, Rotary (Printed Circuit), (Thumbwheel, In-line and Pushbutton), General Specification for
MIL-S-22885	14.1	Switches, Pushbutton, Illuminated, General Specification for
MIL-C-22992	15.1	Connector, Cylindrical, Heavy Duty, General Specification for
MiL-C-23183	10.19	Capacitor, Fixed or Variable, Vacuum Dielectric, General Specification for
MIL-C-23269	10.9	Capacitor, Fixed, Glass Dielectric, Established Reliability, General Specification for
MIL-R-23285	9.15	Resistor, Variable, Nonwirewound, General Specification for

3

۲

- -

2.0 REFERENCE DOCUMENTS

SPECIFICATION	SECTION #	TITLE
MIL-F-23419	22.1	Fuse, Instrument Type, General Specification for
MIL-T-23648	9.8	Thermistor, (Thermally Sensitive Resistor), Insulated, General Specification for
MIL-C-24308	15.1	Connector, Electric, Rectangular, Miniature Polarized Shell, Rack and Panel, General Specification for
MIL-C-25516	15.1	Connector, Electrical, Miniature, Coaxial, Environment Resistant Type, General Specification for
MilC-26482	15.1	Connector, Electrical (Circular, Miniature, Quick Disconnect, Environment Resisting) Receptacles and Plugs, General Specification for
MIL-R-27208	9.9	Resistor, Variable, Wirewound, (Lead Screw Activated) General Specification for
MIL-C-28748	15.1	Connector, Electrical, Rectangular, Rack and Panel, Solder Type and Crimp Type Contacts, General Specification for
MIL-R-28750	13.2	Relay, Solid State, General Specification for
MIL-C-28804	15.1	Connector, Electric Rectangular, High Density, Polarized Central Jackscrew, General Specification for, Inactive for New Designs
MIL-C-28840	15.1	Connector, Electrical, Circular Threaded, High Density, High Shock Shipboard, Class D, General Specification for
MIL-M-38510	5.0	Microcircuits, General Specification for
M1L-H-38534	5.0	Hybrid Microcircuits, General Specification for
MIL-I-38535	5.0	Integrated Circuits (Microcircuits) Manufacturing, General Specification for
MIL-C-38999	15.1	Connector, Electrical, Circular, Miniature, High Density, Quick Disconnect, (Bayonet, Threaded, and Breech Coupling) Environment Resistant, Removable Crimp and Hermetic Solder Contacts, General Specification for
MIL-C-39001	10.7	Capacitor, Fixed, Mica Dielectric, Established Reliability, General Specification for
MIL-R-39002	9.11	Resistor, Variable, Wirewound, Semi-Precision, General Specification for
MIL-C-39003	10.12	Capacitor, Fixed, Electrolytic, (Solid Electrolyte), Tantalum, Established Reliability, General Specification for
MIL-R-39005	9.5	Resistor, Fixed, Wirewound, (Accurate) Established Reliability, General Specification for
MIL-C-39006	10.13	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte) Tantalum Established Reliability, General Specification for
MIL-R-39007	9.6	Resistor, Fixed, Wirewound (Power Type) Established Reliability, General Specification for

•

.

2.0 REFERENCE DOCUMENTS

. . .

SPECIFICATION	SECTION #	TITLE
MIL-R-39008	9.1	Resistor, Fixed, Composition, (Insulated) Established Reliability, General Specification for
MIL-R-39009	9.7	Resistor, Fixed, Wirewound (Power Type, Chassis Mounted) Established Reliability, General Specification for
MIL-C-39010	11.2	Coll, Fixed, Radio Frequency, Molded, Established Reliability, General Specification for
MIL-C-39012	15.1	Connector, Coaxial, Radio Frequency, General Specification for
MIL-C-39014	10.10	Capacitor, Fixed, Ceramic Dielectric (General Purpose) Established Reliability, General Specification for
MRC-39015	9.9	Resistor, Variable, Wirewound (Lead Screw Actuated) Established Reliability, General Specification for
MIL-R-39016	13.1	Relay, Electromagnetic, Established Reliability, General Specification for
MIL-R-39017	9.2	Resistor, Fixed, Film (Insulated), Established Reliability, General Specification for
MIL-C-39018	10.14	Capacitor, Fixed, Electrolytic (Aluminum Oxide) Established Reliability and Nonestablished Reliability, General Specification for
MIL-C-39019	14.5	Circuit Breakers, Magnetic, Low Power, Sealed, Trip-Free, General Specification for
MIL-C-39022	10.4	Capacitor, Fixed, Metallized Paper, Paper-Plastic Film, or Plastic Film Dielectric, Direct and Alternating Current (Hermetically Sealed in Metal Cases) Established Reliability, General Specification for
MIL-R-39023	9.15	Resistor, Variable, Nonwirewound, Precision, General Specification for
MIL-R-39035	9.13	Resistor, Variable, Nonwirewound, (Adjustment Type) Established Reliability, General Specification for
MIL-C-49142	15.1	Connector, Triaxial, RF, General Specification for
MIL-P-55110	15.2	Printed Wiring Boards
MIL-R-55182	9.2	Resistor, Fixed, Film, Established Reliability, General Specification for
MIL-C-55235	15.1	Connector, Coaxial, RF, General Specification for
MIL-C-55302	15.2	Connector, Printed Circuit, Subassembly and Accessories
MiL-C-55339	15.1	Adapter, Coaxial, RF, General Specification for
MIL-C-55514	10.5	Capacitor, Fixed, Plastic (or Metallized Plastic) Dielectric, Direct Current, In Non-Metal Cases, General Specification for
MIL-C-55629	14.5	Circuit Breaker, Magnetic, Unsealed, Trip-Free, General Specification for
MIL-T-55631	11.1	Transformer, Intermediate Frequency, Radio Frequency, and Discriminator, General Specification for

2-5

2.0 REFERENCE DOCUMENTS

SPECIFICATION	SECTIO	N# TITLE
MIL-C-55681	10.11	Capacitor, Chip, Multiple Layer, Fixed, Ceramic Dielectric, Established Reliability, General Specification for
MiL-C-81511	15.1	Connector, Electrical, Circular, High Density, Quick Disconnect, Environment Resisting, and Accessories, General Specification for
MIL-C-83383	14.5	Circuit Breaker, Remote Control, Thermal, Trip-Free, General Specification for
MIL-R-83401	9.4	Resistor Networks, Fixed, Film, General Specification for
MIL-C-83421	10.6	Capacitor, Fixed Supermetallized Plastic Film Dielectric (DC, AC or DC and AC) Hermetically Sealed in Metal Cases, Established Reliability, General Specification for
MIL-C-83513	15.1	Connector, Electrical, Rectangular, Microminiature, Polarized Shell, General Specification for
MIL-C-83723	15.1	Connector, Electrical (Circular Environment Resisting), Receptacles and Plugs, General Specification for
MIL-R-83725	13.1	Relay, Vacuum, General Specification for
MIL-R-83726	13.1, 1 <mark>3.2,</mark> 13.3	Relay, Time Delay, Electric and Electronic, General Specification for
MIL-S-83731	14.1	Switch, Toggle, Unsealed and Sealed Toggle, General Specification for
MilC-83733	15.1	Connector, Electrical, Miniature, Rectangular Type, Rack to Panel, Environment Resisting, 200 Degrees C Total Continuous Operating Temperature, General Specification for
MIL-S-83734	15.3	Socket, Plug-in Electronic Components, General Specification for
STANDARD		TITLE
MIL-STD-756		Reliability Modeling and Prediction
MIL-STD-883		Test Methods and Procedures for Microelectronics
MIL-STD-975		NASA Standard Electrical, Electronic and Electromechanical Parts List
MiL-8TD-1547		Parts, Materials and Processes for Space Launch Vehicles, Technical Requirements for
MIL-STD-1772		Certification Requirements for Hybrid Microcircuit Facilities and Lines

Copies of specifications and standards required by contractors in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting officer. Single copies are also available (without charge) upon written request to:

Standardization Document Order Desk 700 Robins Ave. Building 4, Section D Philadelphia, PA 19111-5094 (215) 697-2667

3.0 INTRODUCTION

3.1 Reliability Engineering - Reliability is currently recognized as an essential need in military electronic systems. It is looked upon as a means for reducing costs from the factory, where rework of defective components adds a non-productive overhead expense, to the field, where repair costs include not only parts and labor but also transportation and storage. More importantly, reliability directly impacts force effectiveness, measured in terms of availability or sortie rates, and determines the size of the "logistics tail" inhibiting force utilization.

The achievement of reliability is the function of reliability engineering. Every aspect of an electronic system, from the purity of materials used in its component devices to the operator's interface, has an impact on reliability. Reliability engineering must, therefore, be applied throughout the system's development in a diligent and timely fashion, and integrated with other engineering disciplines.

A variety of reliability engineering tools have been developed. This handbook provides the models supporting a basic tool, reliability prediction.

3.2 The Role of Reliability Prediction - Reliability prediction provides the quantitative baseline needed to assess progress in reliability engineering. A prediction made of a proposed design may be used in several ways.

A characteristic of Computer Aided Design is the ability to rapidly generate alternative solutions to a particular problem. Reliability predictions for each design alternative provide one measure of relative worth which, combined with other considerations, will aid in selecting the best of the available options.

Once a design is selected, the reliability prediction may be used as a guide to improvement by showing the highest contributors to failure. If the part stress analysis method is used, it may also reveal other fruitful areas for change (e.g., over stressed parts).

The impact of proposed design changes on reliability can be determined only by comparing the reliability predictions of the existing and proposed designs.

The ability of the design to maintain an acceptable reliability level under environmental extremes may be assessed through reliability predictions. The predictions may be used to evaluate the need for environmental control systems.

The effects of complexity on the probability of mission success can be evaluated through reliability predictions. The need for redundant or back-up systems may be determined with the aid of reliability predictions. A tradeoff of redundancy against other reliability enhancing techniques (e.g.: more cooling, higher part quality, etc.) must be based on reliability predictions coupled with other pertinent considerations such as cost, space limitations, etc.

The prediction will also help evaluate the significance of reported failures. For example, if several failures of one type or component occur in a system, the predicted failure rate can be used to determine whether the number of failures is commensurate with the number of components used in the system, or, that it indicates a problem area.

Finally, reliability predictions are useful to various other engineering analyses. As examples, the location of built-in-test circuitry should be influenced by the predicted failure rates of the circuitry monitored, and maintenance strategy planners can make use of the relative probability of a failure's location, based on predictions, to minimize downtime. Reliability predictions are also used to evaluate the probabilities of failure events described in a failure modes, effects and criticality analysis (FMECAs).

3.0 INTRODUCTION

3.3 Limitations of Reliability Predictions - This handbook provides a common basis for reliability predictions, based on analysis of the best available data at the time of issue. It is intended to make reliability prediction as good a tool as possible. However, like any tool, reliability prediction must be used intelligently, with due consideration of its limitations.

The first limitation is that the failure rate models are point estimates which are based on available data. Hence, they are valid for the conditions under which the data was obtained, and for the devices covered. Some extrapolation during model development is possible, but the inherently empirical nature of the models can be severely restrictive. For example, none of the models in this handbook predict nuclear survivability or the effects of ionizing radiation.

Even when used in similar environments, the differences between system applications can be significant. Predicted and achieved reliability have always been closer for ground electronic systems than for avionic systems, because the environmental stresses vary less from system to system on the ground and hence the field conditions are in general closer to the environment under which the data was collected for the prediction model. However, failure rates are also impacted by operational scenarios, operator characteristics, maintenance practices, measurement techniques and differences in definition of failure. Hence, a reliability prediction should never be assumed to represent the expected field reliability as measured by the user (i.e., Mean-Time-Between-Maintenance, Mean-Time-Between-Removals, etc.). This does not negate its value as a reliability engineering tool; note that none of the applications discussed above requires the predicted reliability to match the field measurement.

Electronic technology is noted for its dynamic nature. New types of devices and new processes are continually introduced, compounding the difficulties of predicting reliability. Evolutionary changes may be handled by extrapolation from the existing models; revolutionary changes may defy analysis.

Another limitation of reliability predictions is the mechanics of the process. The part stress analysis method requires a significant amount of design detail. This naturally imposes a time and cost penalty. More significantly, many of the details are not available in the early design stages. For this reason this handbook contains both the part stress analysis method (Sections 5 through 23) and a simpler parts count method (Appendix A) which can be used in early design and bid formulation stages.

Finally, a basic limitation of reliability prediction is its dependence on correct application by the user. Those who correctly apply the models and use the information in a conscientious reliability program will find the prediction a useful tool. Those who view the prediction only as a number which must exceed a specified value can usually find a way to achieve their goal without any impact on the system.

3.4 Part Stress Analysis Prediction

3.4.1 Applicability - This method is applicable when most of the design is completed and a detailed parts list including part stresses is available. It can also be used during later design phases for reliability trade-offs vs. part selection and stresses. Sections 5 through 23 contain failure rate models for a broad variety of parts used in electronic equipment. The parts are grouped by major categories and, where appropriate, are subgrouped within categories. For mechanical and electromechanical parts not covered by this Handbook, refer to Bibliography items 20 and 36 (Appendix C).

The failure rates presented apply to equipment under normal operating conditions, i.e., with power on and performing its intended functions in its intended environment. Extrapolation of any of the base failure rate models beyond the tabulated values such as high or sub-zero temperature, electrical stress values above 1.0, or extrapolation of any associated model modifiers is completely invalid. Base failure rates can be interpolated between electrical stress values from 0 to 1 using the underlying equations.

The general procedure for determining a board level (or system level) failure rate is to sum individually calculated failure rates for each component. This summation is then added to a failure rate for the circuit board (which includes the effects of soldering parts to it) using Section 16, Interconnection Assemblies.

3.0 INTRODUCTION

For parts or wires soldered together (e.g., a jumper wire between two parts), the connections model appearing in Section 17 is used. Finally, the effects of connecting circuit boards together is accounted for by adding in a failure rate for each connector (Section 15, Connectors). The wire between connectors is assumed to have a zero failure rate. For various service use profiles, duty cycles and redundancies the procedures described in MIL-STD-756, Reliability Modeling and Prediction, should be used to determine an effective system level failure rate.

3.4.2 Part Quality - The quality of a part has a direct effect on the part failure rate and appears in the part models as a factor, π_Q . Many parts are covered by specifications that have several quality levels, hence, the part models have values of π_Q that are keyed to these quality levels. Such parts with their quality designators are shown in Table 3-1. The detailed requirements for these levels are clearly defined in the applicable specification, except for microcircuits. Microcircuits have quality levels which are dependent on the number of MIL-STD-883 screens (or equivalent) to which they are subjected.

Part	Quality Designators
Microcircuits	S, B, B-1, Other: Quality Judged by Screening Level
Discrete Semiconductors	JANTXV, JANTX, JAN
Capacitors, Established Reliability (ER)	D, C, S, R, B, P, M, L
Resistors, Established Reliability (ER)	S, R, P, M
Coils, Molded, R.F., Reliability (ER)	S, R, P, M
Relays, Established Reliability (ER)	R, P, M, L

Table 3-1: Parts With Multi-Level Quality Specifications

Some parts are covered by older specifications, usually referred to as Nonestablished Reliability (Non-ER), that do not have multi-levels of quality. These part models generally have two quality levels designated as "MIL-SPEC.", and "Lower". If the part is procured in complete accordance with the applicable specification, the π_Q value for MIL-SPEC should be used. If any requirements are waived, or if a

commercial part is procured, the π_{O} value for Lower should be used.

The foregoing discussion involves the "as procured" part quality. Poor equipment design, production, and testing facilities can degrade part quality. The use of the higher quality parts requires a total equipment design and quality control process commensurate with the high part quality. It would make little sense to procure high quality parts only to have the equipment production procedures damage the parts or introduce latent defects. Total equipment program descriptions as they might vary with different part quality mixes is beyond the scope of this Handbook. Reliability management and quality control procedures are described in other DoD standards and publications. Nevertheless, when a proposed equipment development is pushing the state-of-the-art and has a high reliability requirement necessitating high quality parts, the total equipment program should be given careful scrutiny and not just

3.0 INTRODUCTION

the parts quality. Otherwise, the low failure rates as predicted by the models for high quality parts will not be realized.

3.4.3 Use Environment - All part reliability models include the effects of environmental stresses through the environmental factor, π_E , except for the effects of ionizing radiation. The descriptions of these environments are shown in Table 3-2. The π_E factor is quantified within each part failure rate model. These environments encompass the major areas of equipment use. Some equipment will experience more than one environment during its normal use, e.g., equipment in spacecraft. In such a case, the reliability analysis should be segmented, namely, missile launch (M_L) conditions during boost into and return from orbit, and space flight (S_E) while in orbit.

Environment	π _E Symbol	Equivalent MIL-HDBK-217E, Notice 1 π _E Symbol	Description
Ground, Benign	G _B	G _B G _{MS}	Nonmobile, temperature and humidity controlled environments readily accessible to maintenance; includes laboratory instruments and test equipment, medical electronic equipment, business and scientific computer complexes, and missiles and support equipment in ground silos.
Ground, Fixed	G _F	GF	Moderately controlled environments such as installation in permanent racks with adequate cooling air and possible installation in unheated buildings; includes permanent installation of air traffic control radar and communications facilities.
Ground, Mobile	G _М	G _M Mp	Equipment installed on wheeled or tracked vehicles and equipment manually transported; includes tactical missile ground support equipment, mobile communication equipment, tactical fire direction systems, handheld communications equipment, laser designations and range finders.
Naval, Sheltered	NS	N _S N _{SB}	Includes sheltered or below deck conditions on surface ships and equipment installed in submarines.
Naval, Unsheltered	∾ υ	NU NUU NH	Unprotected surface shipborne equipment exposed to weather conditions and equipment immersed in salt water. Includes sonar equipment and equipment installed on hydrofoil vessels.

Table 3-2: Environmental Symbol and Description

.

.

and a second second

3.0 INTRODUCTION

Environment	≂ _E Symbol	Equivalent MIL-HDBK-217E, Notice 1 π _E Symbol	Description
Airborne, Inhabited, Cargo	A _{IC}	A _{IC} A _{IT} A _{IB}	Typical conditions in cargo compartments which can be occupied by an aircrew. Environment extremes of pressure, temperature, shock and vibration are minimal. Examples include long mission aircraft such as the C130, C5, B52, and C141. This category also applies to inhabited areas in lower performance smaller aircraft such as the T38.
Airborne, Inhabited,	A _{IF}	A _{IF}	Same as A _{IC} but installed on high performance
Fighter	·	A _{IA}	aircraft such as fighters and interceptors. Examples include the F15, F16, F111, F/A 18 and A10 aircraft.
Airborne, Uninhabited, Cargo	Auc	Auc Aut Aub	Environmentally uncontrolled areas which cannot be inhabited by an aircrew during flight. Environmental extremes of pressure, temperature and shock may be severe. Examples include uninhabited areas of long mission aircraft such as the C130, C5, B52 and C141. This category also applies to uninhabited area of lower performance smaller aircraft such as the T38.
Airborne, Uninhabited, Fighter	Åᡁϝ	Au≓ AUA	Same as A _{UC} but installed on high performance aircraft such as fighters and interceptors. Examples include the F15, F16, F111 and A10 aircraft.
Airborne, Rotary Winged	[∧] nw	A _{RW}	Equipment installed on helicopters. Applies to both internally and externally mounted equipment such as laser designators, fire control systems, and communications equipment.
Space, Flight	S _F	s _F	Earth orbital. Approaches benign ground conditions. Vehicle neither under powered flight nor in atmospheric reentry; includes satellites and shuttles.

Table 3-2: Environmental Symbol and Description (cont'd)

3.0 INTRODUCTION

Environment	≭_E Symbol	Equivalent MIL-HDBK-217E, Notice 1 π _E Symbol	Description
Missile, Flight	₩ _F	MFF M _{FA}	Conditions related to powered flight of air breathing missiles, cruise missiles, and missiles in unpowered free flight.
Missile, Launch	ML	ML U _{SL}	Severe conditions related to missile launch (air, ground and sea), space vehicle boost into orbit, and vehicle re-entry and landing by parachute. Also applies to solid rocket motor propulsion powered flight, and torpedo and missile launch from submarines.
Cannon, Launch	с _L	СL	Extremely severe conditions related to cannon launching of 155 mm. and 5 inch guided projectiles. Conditions apply to the projectile from launch to target impact.

Table 3-2: Environmental Symbol and Description (cont'd)

3.4.4 Part Fallure Rate Models - Part failure rate models for microelectronic parts are significantly different from those for other parts and are presented entirely in Section 5.0. A typical example of the type of model used for most other part types is the following one for discrete semiconductors:

$$\lambda_{D} = \lambda_{D} \pi_{T} \pi_{A} \pi_{R} \pi_{S} \pi_{C} \pi_{Q} \pi_{E}$$

where:

 λ_{D} is the part failure rate,

- λ_b is the base failure rate usually expressed by a model relating the influence of electrical and temperature stresses on the part,
- $\pi_{\rm E}$ and the other π factors modify the base failure rate for the category of environmental application and other parameters that affect the part reliability.

The π_E and π_Q factors are used in most all models and other π factors apply only to specific models. The applicability of π factors is identified in each section.

The base failure rate (λ_b) models are presented in each part section along with identification of the applicable model factors. Tables of calculated λ_b values are also provided for use in manual calculations. The model equations can, of course, be incorporated into computer programs for machine processing. The tabulated values of λ_b are cut off at the part ratings with regard to temperature and stress, hence, use of parts beyond these cut off points will overstress the part. The use of the λ_b models in a computer

MUL-MUDDA-ZT/M

3.0 INTRODUCTION

program should take the part rating limits into account. The λ_b equations are mathematically continuous beyond the part ratings but such failure rate values are invalid in the overstressed regions.

All the part models include failure data from both catastrophic and permanent drift failures (e.g., a resistor permanently falling out of rated tolerance bounds) and are based upon a constant failure rate, except for motors which show an increasing failure rate over time. Failures associated with connection of parts into circuit assemblies are not included within the part failure rate models. Information on connection reliability is provided in Sections 16 and 17.

3.4.5 Thermal Aspects - The use of this prediction method requires the determination of the temperatures to which the parts are subjected. Since parts reliability is sensitive to temperature, the thermal analysis of any design should fairly accurately provide the ambient temperatures needed in using the part models. Of course, lower temperatures produce better reliability but also can produce increased penalties in terms of added loads on the environmental control system, unless achieved through improved thermal design of the equipment. The thermal analysis should be part of the design process and included in all the trade-off studies covering equipment performance, reliability, weight, volume, environmental control systems, etc. References 17 and 34 listed in Appendix C may be used as guides in determining component temperatures.

4.0 RELIABILITY ANALYSIS EVALUATION

Table 4-1 provides a <u>general checklist to be used as a guide</u> for evaluating a reliability prediction report. For completeness, the checklist includes categories for reliability modeling and allocation, which are sometimes delivered as part of a prediction report. It should be noted that the scope of any reliability analysis depends on the specific requirements called out in a statement-of-work (SOW) or system specification. The inclusion of this checklist is not intended to change the scope of these requirements.

Major Concerns	Comments
MODELS Are all functional elements included in the reliability block diagram /model?	System design drawings/diagrams must be reviewed to be sure that the reliability model/diagram agrees with the hardware.
Are all modes of operation considered in the math model?	Duty cycles, alternate paths, degraded conditions and redundant units must be defined and modeled.
Do the math model results show that the design achieves the reliability requirement?	Unit failure rates and redundancy equations are used from the detailed part predictions in the system math model (See MIL-STD-756, Reliability Prediction and Modeling).
ALLOCATION Are system reliability requirements allocated (subdivided) to useful levels?	Useful levels are defined as: equipment for subcontractors, assemblies for sub-subcontractors, circuit boards for designers.
Does the allocation process consider complexity, design flexibility, and safety margins?	Conservative values are needed to prevent reallocation at every design change.
PREDICTION Does the sum of the parts equal the value of the module or unit?	Many predictions neglect to include all the parts producing optimistic results (check for solder connections, connectors, circuit boards).
Are environmental conditions and part quality representative of the requirements?	Optimistic quality levels and favorable environmental conditions are often assumed causing optimistic results.
Are the circuit and part temperatures defined and do they represent the design?	Temperature is the biggest driver of part failure rates; low temperature assumptions will cause optimistic results.
Are equipment, assembly, subassembly and part reliability drivers identified?	Identification is needed so that corrective actions for reliability improvement can be considered.
Are alternate (Non MIL-HDBK-217) failure rates highlighted along with the rationale for their use?	Use of alternate failure rates, if deemed necessary, require submission of backup data to provide credence in the values.
Is the level of detail for the part failure rate models sufficient to reconstruct the result? Are critical components such as VHSIC, Monolithic Microwave Integrated Circuits (MMIC), Application Specific Integrated Circuits (ASIC) or Hybrids highlighted?	Each component type should be sampled and failure rates completely reconstructed for accuracy. Prediction methods for advanced technology parts should be carefully evaluated for impact on the module and system.

Table 4-1: Reliability Analysis Checklist

5.0 MICROCIRCUITS, INTRODUCTION

This section presents failure rate prediction models for the following ten major classes of microelectronic devices:

Section

5.1 Monolithic Bipolar Digital and Linear Gate/Logic Array Devices

5.1 Monolithic MOS Digital and Linear Gate/Logic Array Devices

- 5.1 Monolithic Bipolar and MOS Digital Microprocessor Devices
- 5.2 Monolithic Bipolar and MOS Memory Devices
- 5.3 Very High Speed Integrated Circuit (VHSIC/VHSIC-Like and VLSI) CMOS Devices (> 60K Gates)
- 5.4 Monolithic GaAs Digital Devices
- 5.4 Monolithic GaAs MMIC
- 5.5 Hybrid Microcircuits
- 5.6 Surface Acoustic Wave Devices
- 5.7 Magnetic Bubble Memories

In the title description of each monolithic device type, Bipolar represents all TTL, ASTTL, DTL, ECL, CML, ALSTTL, HTTL, FTTL, F, LTTL, STTL, BiCMOS, LSTTL, IIL, I³L and ISL devices. MOS represents all metal-oxide microcircuits, which includes NMOS, PMOS, CMOS and MNOS fabricated on various substrates such as sapphire, polycrystalline or single crystal silicon. The hybrid model is structured to accommodate all of the monolithic chip device types and various complexity levels.

Monolithic memory complexity factors are expressed in the number of bits in accordance with JEDEC STD 21A. This standard, which is used by all government and industry agencies that deal with microcircuit memories, states that memories of 1024 bits and greater shall be expressed as K bits, where 1K = 1024 bits. For example, a 16K memory has 16,384 bits, a 64K memory has 65,536 bits and a 1M memory has 1,048,576 bits. Exact numbers of bits are not used for memories of 1024 bits and greater.

For devices having both linear and digital functions not covered by MIL-M-38510 or MIL-I-38535, use the linear model. Line drivers and line receivers are considered linear devices. For linear devices not covered by MIL-M-38510 or MIL-I-38535, use the transistor count from the schematic diagram of the device to determine circuit complexity.

For digital devices not covered by MIL-M-38510 or MIL-I-38535, use the gate count as determined from the logic diagram. A J-K or R-S flip flop is equivalent to 6 gates when used as part of an LSI circuit. For the purpose of this Handbook, a gate is considered to be any one of the following functions; AND, OR, exclusive OR, NAND, NOR and inverter. When a logic diagram is unavailable, use device transistor count to determine gate count using the following expressions:

Technology	Gate Approximation		
Bipolar	No. Gates = No. Transistors/3.0		
CMOS	No. Gates = No. Transistors/4.0		
All other MOS except CMOS	No. Gates = No. Transistors/3.0		

Contractor and a second second second second second

5.0 MICROCIRCUITS, INTRODUCTION

A detailed form of the Section 5.3 VHSIC/VHSIC-Like model is included as Appendix B to allow more detailed trade-offs to be performed. Reference 30 should be consulted for more information about this model.

Reference 32 should be consulted for more information about the models appearing in Sections 5.1, 5.2, 5.4, 5.5, and 5.6. Reference 13 should be consulted for additional information on Section 5.7.

5.1 MICROCIRCUITS, GATE/LOGIC ARRAYS AND MICROPROCESSORS

DESCRIPTION

- 1. Bipolar Devices, Digital and Linear Gate/Logic Arrays
- 2. MOS Devices, Digital and Linear Gate/Logic Arrays
- 3. Field Programmable Logic Array (PLA) and Programmable Array Logic (PAL)
- 4. Microprocessors

$\lambda_p = (C_1 \pi_T + C_2 \pi_E) \pi_Q \pi_L$ Failures/10⁶ Hours

	Digital			Linear		PLA/PAL	
No	. Gates	C ₁	No. 1	Transistors	C ₁	No. Gates	C ₁
101 1,001 3,001 10,001	to 100 to 1,000 to 3,000 to 10,000 to 30,000 to 60,000	.0025 .0050 .010 .020 .040 .080	101	to 100 to 300 to 1,000 to 10,000	.010 .020 .040 .060	Up to 200 201 to 1,000 1,001 to 5,000	.010 .021 .042

		Digital		Linear			PLA/PAL		
N	ю. G	ates	C ₁	No.	Trai	nsistors	C ₁	No. Gates	C ₁
1 101 1,001 3,001 10,001 30,001		100 1,000 3,000 10,000 30,000 60,000	.010 .020 .040 .080 .16 .29	1 101 301 1,001	to to to	100 300 1,000 10,000	.010 .020 .040 .060	Up to 500 501 to 1,000 2,001 to 5,000 5,001 to 20,000	.00085 .0017 .0034 .0068

*NOTE: For CMOS gate counts above 60,000 use the VHSIC/VHSIC-Like model in Section 5.3

Microprocessor	
Die Complexity Failure Rate	- C ₁

No. Bits	Bipolar C1	MOS C ₁
Up to 8	.060	.14
Up to 16	.12	.28
Up to 32	.24	.56

All Other Model Parameters				
Parameter	Refer to			
₹Ţ	Section 5.8			
C ₂	Section 5.9			
^π Ε, ^π Q, ^π L	Section 5.10			

DESCRIPTION

- 1. Read Only Memories (ROM)
- 2. Programmable Read Only Memories (PROM)
- Ultraviolet Eraseable PROMs (UVEPROM)
 "Flash," MNOS and Floating Gate Electrically Eraseable PROMs (EEPROM). Includes both floating gate tunnel oxide (FLOTOX) and textured polysilicon type EEPROMs
 5. Static Random Access Memories (SRAM)
 6. Dynamic Random Access Memories (DRAM)

 $\lambda_p = (C_1 \pi_T + C_2 \pi_E + \lambda_{cyc}) \pi_Q \pi_L$ Failures/10⁶ Hours

Die Complexity Failure Rate - C1												
		M	Bipolar									
Memory Size, B (Bits)	ROM	PROM, UVEPROM, EEPROM, EAPROM	DRAM	SRAM (MOS & BiMOS)	ROM, PROM	SRAM						
Up to 16K 16K < B ≤ 64K 64K < B ≤ 256K 256K < B ≤ 1M	.00065 .0013 .0026 .0052	.00085 .0017 .0034 .0068	.0013 .0025 .0050 .010	.0078 .016 .031 .062	.0094 .019 .038 .075	.0052 .011 .021 .042						

A ₁ Factor	for Acyc Calculation	or Acyc Ca	

Total No. of Programming Cycles Over EEPROM Life, C	Flotox ¹	Textured- Poly ²
Up to 100 $100 < C \le 200$ $200 < C \le 500$ $500 < C \le 1K$ $1K < C \le 3K$ $3K < C \le 7K$ $7K < C \le 15K$ $15K < C \le 20K$ $20K < C \le 30K$ $30K < C \le 100K$ $100K < C \le 200K$.00070 .0014 .0034 .0068 .020 .049 .10 .14 .20 .68 1.3	.0097 .014 .023 .033 .061 .14 .30 .30 .30 .30 .30 .30
200K < C ≤ 400K 400K < C ≤ 500K	2.7 3.4	.30 .30

1. $A_1 = 6.817 \times 10^{-6}$ (C)

2. No underlying equation for Textured-Poly.

 A_2 Factor for λ_{cyc} Calculation

- 070	·
Total No. of Programming Cycles Over EEPROM Life, C	Textured-Poly A ₂
Up to 300K	0
300K < C ≤ 400K	1.1
400K < C ≤ 500K	2.3

All Other Model Parameters

Parameter	Refer to						
^π ⊤ C ₂	Section 5.8 Section 5.9						
^π E ^{, π} Q ^{, π} L	Section 5.10						
λ _{cyc} (EEPROMS only)	Page 5-5						
$\lambda_{cyc} = 0$ For all other devices							

5.2 MICROCIRCUITS, MEMORIES

EEPROM Read/Write Cycling Induced Failure Rate - λ _{cyc}										
	y Devices Except Flot Poly EEPROMS	ox and	λ _{cyc} = 0							
Flotox and	Textured Poly EEPR	ioms ^λ cyc	$= \left[A_1 B_1 + \frac{A_2 B_2}{\pi_Q} \right] \pi_{\text{ECC}}$							
Model Fac	tor	Elotox Page 5-4	Textured-Poly Page 5-4							
B ₁		Page 5-6	Page 5-6							
A2		$A_2 = 0$	Page 5-5							
B2		$B_2 = 0$	Page 5-6							
πQ		Section 5.10	Section 5.10							
1. No On-(2. On-Chip 3. Two-Ne	Hamming Code	$\pi_{\text{ECC}} = 1.0$ $\pi_{\text{ECC}} = .72$ $\pi_{\text{ECC}} = .68$	$\pi_{\text{ECC}} = 1.0$ $\pi_{\text{ECC}} = .72$ $\pi_{\text{ECC}} = .68$							
NOTES:		24 for modeling off-chip error memory system level.	or detection and correction							
	2. If EEPROM type	e is unknown, assume Floto	c.							
	on-chip error co the on-chip ham approach which	rrection circuitry into their EE ming code entry. Other mar	ROM manufacturers have incorporated EPROM devices. This is represented by sufacturers have taken a redundant cell e transistor in every memory cell. This dant cell entry.							
4. The A ₁ and A ₂ factors shown in Section 5.2 were developed based on an assum system life of 10,000 operating hours. For EEPROMs used in systems with significantly longer or shorter expected lifetimes the A ₁ and A ₂ factors should be multiplied by:										
		10,000								
		ystem Lifetime Operating								

	<u> </u>	.2	MI		10	C	IH	Ç		13	<u>}</u>		E		R		5	_						_			_							
		Ň	-	0) 0		2.7	~	2) 4	. e.	5	1.2	1.2			2.	2 d	ţS	87	8	8.	1.	2.1	2 F			ଞ	62	8. 8. 8.				
	y ³ (B ₂)	256K	4	-			2	! -		0	96	6	.87	.83	6 7.	57.					28	.57	55.	S.			9	45	4	4.4.	(<u>10</u> - <u>6</u>			
	Textured-Poly ³ (B ₂)	64K		0	36	68	84	BO	52	12	99	65	.62	59	190	1 1 1	- 0		4	4	42	4	39		5 C	6 -	33	32	.31	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	$\left(\overline{T_{j}^{1}+273}\right)$			
	Texti	16K	0.76	0.71	0.67	0.63	0.59	0.56	0.53	0.50	0.48	0.46	0.43	0.41	9.0 9.1				33	0.31	0.30	0.29	0.28	12.0			0.23	0.23	0.22	0.21 0.21				
		4	54	50	47	45	24	04	38	36	46.	.32	.31	.29	82 87 87	12.	2 2 2 2	7	i	52	.21	.20	6 .	2.9	<u>e</u> ‡	1	.16	.16	: <u>15</u>	st. 15	•xp (8.63			
		ž	6	2.0	2.2	2.3	2.5	2.7	2.8	0.0	9.5 7.5	3.4	3.6	3.8	4 4	4 4		- 0	25	5.5			0 i i	0 e	0 -	-	7.6	7.9	80 0	2 80 2 80	\$3			
culation	² (B ₁)	256K	13	4	1.5	1.6	8	6	2.0	2.1	2.3	2.4	2.6	2.7	5.9) c) c	7 7 7 7	r 40 5 cm	3.7	3.9	4.1	4.2	4.4	•	0 C	2	5.4	5.6	5.8	6.3	$-\left(\frac{B}{64000}\right)$			
and B_2 Factors for λ_{cyc} Calculation	Textured-Poly ² (B ₁)	64K	6	0.1	1.1	1.2	1.3	5.	4	1.5	1.6	1.7	1.8	1.9	00	N 0 N 0) -	r un i c	2.6	2.8	2.9	3.0	2 2 2 2 2 2	n .	, a	3.0	3.9	4	4	4.5	ы Б С		ation	
ctors for	Textur	16K	99	2	11.	.82	88.	94	1.0	1.1		1.2	1.3	4	₩ 1	n 4	• •		6.1	1.9	2.0	5	CN 0) () (1 U 1 O	9 9 9	2.7	2.8 2	6, 0 N 0	3.1			Determin	
ld B ₂ Fa		4 7	.47	.50	5	.58	.62	.67	17.	.76	.81	. 86	6 .	96.	0				5	4.	4 .	1.5	9.9			. 6 0	1.9	2.0	~	2.2	$\frac{1}{333} \bigg) \bigg]$	$\frac{1}{303}$	perature (°C). See Section 5.11 for T _J Determination	
B1 ar		ř	4.3	4.8	5.2	5.7	6.3	6.8	7.4	8.0	8.6	9.3	₽	=	2:	25	2 7	5	9	17	18	6	ត្ត ខ	<u>.</u> ?	3 2	22	35	27	88	31 8	$\left(\frac{1}{1_{\rm J}+273}-\frac{1}{3}\right)$	273 -	Section 5.	
	(B ₁)	256K	2.2	2.4	2.7	2.9	3.2	3.4	3.7	4.1	4.4	4.7	5.1	5.4	5. 2. 2.	2 r 0 4	5 F	7.5	8.0	8.5	9.0	9. 2	2:	= :	: \$	10	13	4	4	15		- <u>-</u>	C). See (
	Flotox ¹ (B ₁)	64K																												7.7		.1 8.63 x 10 ⁻⁵	erature (°	= 1024 bits
		16K																							0 0 1 0		3.2	9 .6	5 5 7 1 0	3. / 3.9	e xp) dxe	on Temp	ž
		¥ ¥	27	8	.33	36.	9	43	4	5.	.55	.59	6 9.	89.	5. 1.				0.1									1.7		• •	$\left[\frac{1}{200}\right]^{-5}$	(<u>B</u>).25	ise Juncti	bits. NO
	1	Memory Size, B(Bits)- T ₁ (°C)	25	R	ŝ	9	4 5	20	55	60	3	2	75	80	85	2.4	001	105	110	115	120	125	130	2	241	150	155	160	165	175	$1. B_1 - \left(\frac{B}{16000}\right)$	3. B ₂ = (640	T _J = Worse Case Junction Tem	B - Number of bits. NOTE:

5.2 MICROCIRCUITS, MEMORIES

5-6

MICROCIRCUITS, VHSIC/VHSIC-LIKE AND VLSI CMOS 5.3

DESCRIPTION CMOS greater than 60,000 gates

 $\lambda_p = \lambda_{BD} \pi_{MFG} \pi_{T} \pi_{CD} + \lambda_{BP} \pi_{E} \pi_{Q} \pi_{PT} + \lambda_{EOS}$ Failures/10⁶ Hours

Die Base Failure Rate - λ_{RD}

Part Type	λ _{BD}
Logic and Custom	0.16
Gate Array	0.24

All Other M	All Other Model Parameters						
Parameter	Refer to						
* T	Section 5.8						
[#] E ^{, #} Q	Section 5.10						

Manufacturing Process Correction Factor - TIMEG

Manufacturing Process	⁷⁷ MFG
QML or QPL	.55
Non QML or Non QPL	2.0

Package Type Correction Factor - #PT

	*PT									
Package Type	Hermetic	Nonhermetic								
DIP Pin Grid Array Chip Carrier (Surface Mount Technology)	1.0 2.2 4.7	1.3 2.9 6.1								

Die Complexity Correction Factor - TCD

Feature Size			Die Area (cm ²)		
(Microns)	A ≤ .4	.4 < A ≤ .7	.7 < A ≤ 1.0	1.0 < A ≤ 2.0	2.0 < A ≤ 3.0
.80	8.0	14	19	38	58
1.00	5.2	8.9	13	25	37
1.25	3.5	5.8	8.2	16	24
$\pi_{\rm CD} = \left(\left(\frac{A}{.21} \right) \right) \left(\frac{A}{X} \right)$	$\left(\frac{2}{s}\right)^2$ (.64) + .36	A = Total Scrit	ed Chip Die Area in	cm ² X _s = Featu	re Size (microns)
Die Area Convers	ion: $cm^2 = MIL^2$	+ 155,000			

	D P
Number of Pins	λ _B
24	.00

28

40

44

48

52

64

84

120

124

144

220

NP

Package Base Failure Rate - Jon

3P 26 .0027 .0029 .0030 .0030 .0031 .0033 .0036 .0043 .0043

.0047

.0060

$\lambda_{BP} = .0022 + ((1.72 \times 10^{-5}) (NP))$

Number of Package Pins

77

ž

Ξ.

Electrical Överstress Failure Rate - λ_{EOS}

V _{TH} (ESD Susceptibility (Volts))*	λ _{EOS}
0 - 1000	.065
> 1000 - 2000	.053
> 2000 - 4000	.044
> 4000 - 16000	.029
> 16000	.0027
λ _{EOS} = (-In (100057 exp(0002 V _{TH})) /.00876	
V _{TH} = ESD Susceptibility (volts)	
 Voltage ranges which will cause the part to fail. If unknown, use 0 - 1000 volts. 	

~

~

ı.

5.4 MICROCIRCUITS, GAAS MMIC AND DIGITAL DEVICES

DESCRIPTION

Gallium Arsenide Microwave Monolithic Integrated Circuit (GaAs MMIC) and GaAs Digital Integrated Circuits using MESFET Transistors and Gold Based Metallization

$\lambda_p = [C_1 \pi_T \pi_A + C_2 \pi_E] \pi_L \pi_Q$ Failures/10⁶ Hours

MMIC: Die Complexity Failure Rates - C1

Complexity (No. of Elements)	C ₁	
1 to 100 101 to 1000	4.5 7.2	

1. C₁ accounts for the following active elements: transistors, diodes.

Digital: Die Complexity Failure Rates - C1

Complexity (No. of Elements)	^C 1
1 to 1000	25
1,001 to 10,000	51

1. C₁ accounts for the following active elements: transistors, diodes.

Device Application Factor - π_A

Application	*A
MMIC Devices Low Noise & Low Power (≤ 100 mW) Driver & High Power (> 100 mW) Unknown	1.0 3.0 3.0
Digital Devices All Digital Applications	1.0

All Other Model Parameters

Parameter	Refer to
π _T	Section 5.8
C ₂	Section 5.9
^π Ε, ^π L, ^π Q	Section 5.10
	1

5.5 MICROCIRCUITS, HYBRIDS

DESCRIPTION Hybrid Microcircuits

 $\lambda_{\rm D} = [\Sigma N_{\rm C} \lambda_{\rm C}] (1 + .2 \pi_{\rm E}) \pi_{\rm F} \pi_{\rm O} \pi_{\rm L}$ Failures/10⁶ Hours

N_c = Number of Each Particular Component

 λ_c = Failure Rate of Each Particular Component

The general procedure for developing an overall hybrid failure rate is to calculate an individual failure rate for each component type used in the hybrid and then sum them. This summation is then modified to account for the overall hybrid function ($\pi_{\rm F}$), screening level ($\pi_{\rm Q}$), and maturity ($\pi_{\rm L}$). The hybrid package failure rate is a function of the active component failure modified by the environmental factor (i.e., (1 + .2 $\pi_{\rm E}$)). Only the component types listed in the following table are considered to contribute significantly to the overall failure rate of most hybrids. All other component types (e.g., resistors, inductors, etc.) are considered to contribute insignificantly to the overall hybrid failure rate, and are assumed to have a failure rate of zero. This simplification is valid for most hybrids; however, if the hybrid consists of mostly passive components then a failure rate should be calculated for these devices. If factoring in other component types, assume $\pi_{\rm Q} = 1$, $\pi_{\rm E} = 1$ and $T_{\rm A}$ = Hybrid Case Temperature for these calculations.

Determine λ _c for These Component Types	Handbook Section	Make These Assumptions When Determining $\lambda_{\rm C}$
Microcircuits	5	$C_2 = 0$, $\pi_Q = 1$, $\pi_L = 1$, T_J as Determined from Section 5.12, $\lambda_{BP} = 0$ (for VHSIC).
Discrete Semiconductors	6	$\pi_{Q} = 1$, T _J as Determined from Section 6.14, $\pi_{E} = 1$.
Capacitors	10	$\pi_{Q} = 1, T_{A} = Hybrid Case Temperature, \pi_{E} = 1.$

Determination of λ_c

NOTE: If maximum rated stress for a die is unknown, assume the same as for a discretely package die of the same type. If the same die has several ratings based on the discrete packaged type, assume the lowest rating. Power rating used should be based on case temperature for discrete semiconductors.

Circuit Function Factor - π_{F}		
Circuit Type	π _F	
Digital	1.0	
Video, 10 MHz < f < 1 GHz	1.2	
Microwave, f > 1 GHz	2.6	
Linear, f < 10 MHz	5.8	
Power	21	

Ai	Other	Hyprid	Model	Parameters	
		I ITUIN.	NUCUCI		

π _L , πQ, πΕ	Refer to Section 5.10

5.6 MICROCIRCUITS, SAW DEVICES

DESCRIPTION Surface Acoustic Wave Devices

$\lambda_p = 2.1 \pi_Q \pi_E$ Failures/10⁶ Hours

Quality Factor - π_Q

Screening Level	πQ
10 Temperature Cycles (-55°C to +125°C) with end point electrical tests at temperature extremes.	.10
None beyond best commerical practices.	1.0

Environmental Factor - RE Environment π_E .5 GB GF 2.0 4.0 GM 4.0 NS 6.0 NU 4.0 AIC AIF 5.0 5.0 AUC 8.0 AUF 8.0 ARW .50 SF 5.0 MF ML 12 CL 220

5.7 MICROCIRCUITS, MAGNETIC BUBBLE MEMORIES

The magnetic bubble memory device in its present form is a non-hermetic assembly consisting of the following two major structural segments:

- 1. A basic bubble chip or die consisting of memory or a storage area (e.g., an array of minor loops), and required control and detection elements (e.g., generators, various gates and detectors).
- 2. A magnetic structure to provide controlled magnetic fields consisting of permanent magnets, coils, and a housing.

These two structural segments of the device are interconnected by a mechanical substrate and lead frame. The interconnect substrate in the present technology is normally a printed circuit board. It should be noted that this model does not include external support microelectronic devices required for magnetic bubble memory operation. The model is based on Reference 33. The general form of the failure rate model is:

$$\lambda_{\rm D} = \lambda_1 + \lambda_2$$
 Failures/10⁶ Hours

where:

 λ_1 = Failure Rate of the Control and Detection Structure

 $\lambda_1 = \pi_Q \left[N_C C_{11} \pi_{T1} \pi_W + (N_C C_{21} + C_2) \pi_E \right] \pi_D \pi_L$

 λ_2 = Failure Rate of the Memory Storage Area

$$\lambda_2 = \pi_Q N_C (C_{12} \pi_{T2} + C_{22} \pi_E) \pi_L$$

Chips Per Package - N_C

N_C = Number of Bubble Chips per Packaged Device

Temperature Factor – π_T

$$\begin{aligned} \pi_{T} &= (.1) \exp \left[\frac{-Ea}{8.63 \times 10^{-5}} \left(\frac{1}{T_{J} + 273} - \frac{1}{298} \right) \right] \\ \text{Use:} \\ E_{a} &= .8 \text{ to Calculate } \pi_{T1} \\ E_{a} &= .55 \text{ to Calculate } \pi_{T2} \\ T_{J} &= Junction \text{ Temperature } (^{\circ}\text{C}), \\ &25 \leq T_{J} \leq 175 \\ T_{J} &= T_{CASE} + 10^{\circ}\text{C} \end{aligned}$$

Device Complexity Failure Rates for Control and Detection Structure - C₁₁ and C₂₁

 $C_{11} = .00095(N_1)^{.40}$

$$C_{21} = .0001(N_1)^{.226}$$

 N_1 = Number of Dissipative Elements on a Chip (gates, detectors, generators, etc.), $N_1 \le 1000$

5.7 MICROCIRCUIT, MAGNETIC BUBBLE MEMORIES

	W	ite Duty Cycle Factor - π_W
^π W	=	<u>10D</u> (R/W). ³
πw	Ŧ	1 for $D \le .3$ or $R/W \ge 2154$
D	#	Avg. Device Data Rate Mfg. Max. Rated Data Rate ≤1
R/W	=	No. of Reads per Write
	or s	seed-bubble generators, divide by 4, or use 1, whichever is greater.

Duty Cycle Factor - π_D

 $\pi_{D} = .9D + .1$

$$D = \frac{Avg. Device Data Rate}{Mfg. Max. Rated Data Rate} \le 1$$

Device Complexity Failure Rates for Memory Storage Structure - C_{12} and C_{22} $C_{12} = .00007(N_2)^{.3}$ $C_{22} = .00001(N_2)^{.3}$ N_2 = Number of Bits, $N_2 \le 9 \times 10^6$

All Other Model Parameters

Parameter	Section
C ₂	5.9
^π Ε, ^π Q, ^π L	5.10

GeAe Digital Active Devices, see	1.4	- 200	2.506-08	5.906-08	1.406-07	3.106-07	6.60E-0/ 1.50E-06	3.106-06	6.40E-06	2.505-05	4.00E-05	1.706-04	3.20E-04	5.80E-04	1.80E-03	3.10E-03	9.30E-03	1.506-02	2.40E-02	6.30E-02	1.00E-01	2.40E-01	3.70E-01	5.70E-01	6:2AE-01					
Gene MARC Active Devices, and	1.5	1 2/2 10	0.400-00	2.106-08	6.20E-08	1.305-07	6.70E-07	1.506-06	3.20E-00	1.406.05	2.906-06	1.106-04	2.100.04	4.00E-04	1.406-03	2.406.03	7.506-00	1.306-02	2.20E-02	6.106-02	1.006-01	2.60E-01	4.10E-01	6.40E-01	GeAs Devices				6.11 br the	
Memories Biedder 1 MOG9, MMOG	9	•	51.	.21	5		92	<u>, i</u>	2.1	8		9 49	8.5	= 7	18	នុ	3 18	4	36	5 28	88	<u>8</u> 8	180	210			Gads Devices).		shown in Section	er consideration.
Liner (Bipoler & MOS)	.65	01	5	23		4 4 1	10	- 0	5 60 Vi (Vi	8	20	0	č i	5	28	84	88	22	120	2	180	270	330	004	$\frac{1}{12}$	6.617 x 10 ⁻⁰ ('J + *	tel Femperature ((ne default values (e component und
Digital MOS, VHSIC CMOS,	8 .	0	£1.	2	61. 7C	4 G C	SE.	4		5.3	i a	-			~	4 N		ŝ		0		2.0	7.0			_	Effective Activation Energy (eV) (Shown Above) Worse Case Junction Temperature (Silicon Devices) or Average Active Device Channel Temperature (GaAs Devices). See Section 5.11 (or Section 5.12 for Hytrids) for T _J Determination.	TJ = T _C + Pe _{JC} T _C = Case Temperature (°C) P = Device Power Dissipation (V) 9 = Junction to Case Thermal Basistone (*C.M.)	l-38510, or from t	chrologies. Ismperature of th
III, I ³ L, ISL	9.	01	5	23	E S	? Z	58	<u>, , , , , , , , , , , , , , , , , , , </u>	2.7 	0.0	9 Q.	9	8.5		5	28	5	12	16	82	88	205	99	250			ivation Energy (eV) (Shown Above) Junction Temperature (Silicon Devices) or Average Act 5.11 (or Section 5.12 by Hytrids) for T _J Determination.	(M) (e) Mi	anulacturer, MilN	NCT, C and FCT with up to the rated
BICHADS, LSTTL	ιΩ.	0	-	<u>e</u> ;	ç Z	ŝ	8	R. e		- C	- @			9	5.0		13	9	: CS	21	36	; ,	81	78	- 1 Silicon Devices		(Shown Above) Ire (Silken Diwko 2 lor Hytrids) for	lture (°C) Diesipebion (VI) ee Therrol Resis	om the device ma	or HC, HCT, AC, / onsidered valid or
F, LTTL, STTL	¥5	2	.13	<u>8</u>	ŝ ei	ŝ	8	9.9 90	0			0 0 0	0 4 V 6		() () ()	9 (0) 7 49	8 2 2	9 .0	5	5	2 2	3	2	35	$\frac{1}{7_{1}+273}$		Effective Activation Energy (aV) (Shown Above) Worse Case Junction Temperature (Silicon Duvi See Section 5.11 (or Section 5.12 by Hytrids) b	T _C + P θ _J C Case Tempera Device Power Junction to Ca	uld be ablained fr pourvelant device	tel MOS column t
TL ASTL CAL HTTL FTTL OTL ECL ASTTL	•	.10	ē.	2.6	22	R	9:	6.9	5	2 <u>-</u>		9.0	- 0	2.7	3.2	6.4	 	9.9 9	1.7	8.6	2=	21		18	xp (Effective Active Wome Case Ju See Section 5.1		BJC sho closest	2. Use Digi 3. Table en
	Ea(eV) → T _J (°C)	35	ន	R 9	4	8	88	88	21	<u>د 8</u>	8	88	18	<u>8</u>	212	28	ន៍ខ	3 2	2	5 5 5	ž	8	80	175	R _T = .1 exp	ı	ᆘ	NOTES:		

.

5.8 MICROCIRCUITS, π_T TABLE FOR ALL

5-13

and a second second

5.9 MICROCIRCUITS, C2 TABLE FOR ALL

.

.

Package Type													
Number Functior Pins, N	nal	Hermetic: DIPs w/Solder or Weld Seal, Pin Grid Array (PGA) ¹ , SMT (Leaded and Nonleaded)	DIPs with Glass Seal ²	Flatpacks with Axial Leads on 50 Mil Centers ³	Cans ⁴	Nonhermetic: DIPs, PGA, SMT (Leaded and Nonleaded) ⁵							
3 4 6 8 10 12 14 16 18 22 24 28 36 40 64 80 128 180 224		.00092 .0013 .0019 .0026 .0034 .0041 .0048 .0056 .0064 .0079 .0087 .010 .013 .015 .025 .032 .032 .053 .076 .097	.00047 .00073 .0013 .0021 .0029 .0038 .0048 .0059 .0071 .0096 .011 .014 .020 .024 .048	.00022 .00037 .00078 .0013 .0020 .0028 .0037 .0047 .0058 .0083 .0098	.00027 .00049 .0011 .0020 .0031 .0044 .0060 .0079	.0012 .0016 .0025 .0034 .0043 .0053 .0062 .0072 .0082 .010 .011 .013 .017 .019 .032 .041 .068 .098 .12							
1. $C_2 = 2.8 \times 10^{-4} (N_p)^{1.08}$ 2. $C_2 = 9.0 \times 10^{-5} (N_p)^{1.51}$													
3. C	3. $C_2 = 3.0 \times 10^{-5} (N_p)^{1.82}$ 4. $C_2 = 3.0 \times 10^{-5} (N_p)^{2.01}$												
5. C	5. $C_2 = 3.6 \times 10^{-4} (N_p)^{1.08}$												
NOTES:													
1. S	SMT: Surface Mount Technology												
2. D	DIP: Dual In-Line Package												
3. If	DIP S	Seal type is unknow	wn, assume glass										
F	. The package failure rate (C ₂) accounts for failures associated only with the package itself. Failures associated with mounting the package to a circuit board are accounted for in Section 16, Interconnection Assemblies.												

Package Failure Rate for all Microcircuits - C2

Environment Factor - # E					
Environment	π _E				
G _B	.50				
G _F	2.0				
GM	4.0				
N _S	4.0				
NU	6.0				
AIC	4.0				
A _{IF}	5.0				
AUC AUF	5.0				
AUF	8.0				
A _{RW}	8.0				
S _F	.50				
M _F	5.0				
ML	12				
cī	220				

.

5.10 MICROCIRCUITS, π_E , λ_L AND π_Q TABLES FOR ALL

Class S Categories:

1: 2. 3.	Procured in full accordance with MIL-M-38510, Class S requirements. Procured in full accordance with MIL-I-38535 and Appendix B thereto (Class U). Hybrids: (Procured to Class S requirements (Quality Level K) of MIL-H-38534.	.25					
Class	B Categories;						
1.	Procured in full accordance with MIL-M-38510, Class B requirements.						
2.	Procured in full accordance with MIL-I-38535, (Class Q).	1.0					
3.	Hybrids: Procured to Class B requirements (Quality Level H) of MIL-H-38534.						
Class	B-1 Category:						
Class B-1 Category: Fully compliant with all requirements of paragraph 1.2.1 of MIL-STD-883 and procured to a MIL drawing, DESC drawing or other government approved documentation. (Does not include hybrids). For hybrids use custom screening section below.							

Quality Factors - π_Q Description

Learning	Factor	-	π
----------	--------	---	---

Years in Production, Y	π
≤ .1	2.0
.5	1.8
1.0	1.5
1.5	1.2
≥ 2.0	1.0

 $\pi_{L} = .01 \exp(5.35 - .35Y)$

Y = Years generic device type has been in production

t

πQ

5.10 MICROCIRCUITS, π_E , π_L AND π_Q TABLES FOR ALL

Quality Factors (cont'd): π_Q Calculation for Custom Screening Programs

Group	MIL-STD-883 Screen/Test (Note 3)	Point	Valuation				
1.	TM 1010 (Temperature Cycle, Cond B Minimum) and TM 2001 (Constant Acceleration, Cond B Minimum) and TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temp Extremes) and TM 1014 (Seal Test, Cond A, B, or C) and TM 2009 (External Visual)	50					
2*	TM 1010 (Temperature Cycle, Cond B Minimum) or TM 2001 (Constant Acceleration, Cond B Minimum) TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temp Extremes) and TM 1014 (Seal Test, Cond A, B, or C) and TM 2009 (External Visual)	37					
3	Pre-Bum in Electricals TM 1015 (Burn-in B-Level/S-Level) and TM 5004 (or 5008 for Hybrids) (Post Burn-in Electricals @ Temp Extremes)	30 36	(B Level) (S Level)				
4*	TM 2020 Pind (Particle Impact Noise Detection)	11					
5	TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temperature Extremes)	11	(Note 1)				
6	TM 2010/17 (Internal Visual)	7					
7*	TM 1014 (Seal Test, Cond A, B, or C)	7	(Note 2)				
8	TM 2012 (Radiography)	7					
9	TM 2009 (External Visual)	7	(Note 2)				
10	TM 5007/5013 (GaAs) (Wafer Acceptance)	1					
11	TM 2023 (Non-Destructive Bond Pull)	1					
π _Q = 2	E Point Valuations						
*NOT APPROP	RIATE FOR PLASTIC PARTS.						
 NOTES: Point valuation only assigned if used independent of Groups 1, 2 or 3. Point valuation only assigned if used independent of Groups 1 or 2. Sequencing of tests within groups 1, 2 and 3 must be followed. TM refers to the MIL-STD-883 Test Method. Nonhermetic parts should be used only in controlled environments (i.e., G_B and other temperature/humidity controlled environments). 							
EXAMPLES:							
	forms Group 1 test and Class B burn-in: $\pi_Q = 2 + \frac{87}{50+30} = 3.1$	87					
2. Mfg. per	forms internal visual test, seal test and final electrical test: $\pi_Q = 2 + 1$	<u> </u>	= 5.5				
Other C	commercial or Unknown Screening Levels $\pi_Q = 10$						

5-16

5.11 MICROCIRCUITS, TJ DETERMINATION, (ALL EXCEPT HYBRIDS)

Ideally, device case temperatures should be determined from a detailed thermal analysis of the equipment. Device junction temperature is then calculated with the following relationship:

$$T_{I} = T_{C} + \theta_{IC}P$$

T₁ = Worst Case Junction Temperature (°C).

.

 T_{C} = Case Temperature (°C). If not available, use the following default table.

Environment	GB							AUC			S _F	M _F	ML	CL
T _C (℃)	35	45	50	45	50	60	60	75	75	60	35	50	60	45

Default Case Temperature (T_C) for all Environments

 θ_{JC} = Junction-to-case thermal resistance (°C/watt) for a device soldered into a printed circuit board. If θ_{JC} is not available, use a value contained in a specification for the closest equivalent device or use the following table.

Package Type (Ceramic Only)	Die Area > 14,400 mil ² θ _{JC} (℃W)	Die Area ≤ 14,400 mil ² θ _{JC} (°C/W)
Dual-In-Line	11	28
Flat Package	10	22
Chip Carrier	10	20
Pin Grid Array	10	20
Can	_	70

P = The maximum power dissipation realized in a system application. If the applied power is not available, use the maximum power dissipation from the specification for the closest equivalent device.

5.12 MICROCIRCUITS, T. DETERMINATION, (FOR HYBRIDS)

This section describes a method for estimating junction temperature (T_J) for integrated circuit dice mounted in a hybrid package. A hybrid is normally made up of one or more substrate assemblies mounted within a sealed package. Each substrate assembly consists of active and passive chips with thick or thin film metallization mounted on the substrate, which in turn may have multiple layers of metallization and dielectric on the surface. Figure 5-1 is a cross-sectional view of a hybrid with a single multi-layered substrate. The layers within the hybrid are made up of various materials with different thermal characteristics. The table following Figure 5-1 provides a list of commonly used hybrid materials with typical thicknesses and corresponding thermal conductivities (K). If the hybrid internal structure cannot be determined, use the following default values for the temperature rise from case to junction: microcircuits, 10° C; transistors, 25°C; diodes, 20°C. Assume capacitors are at T_C.

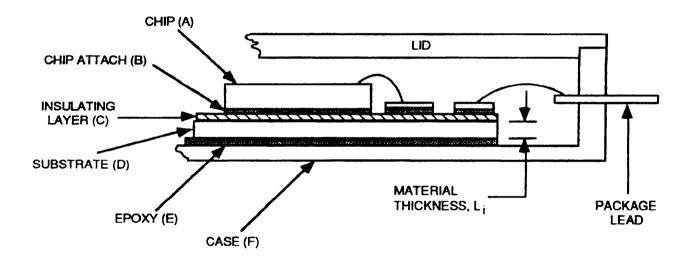


Figure 5-1: Cross-sectional View of a Hybrid with a Single Multi-Layered Substrate

5.12 MICROCIRCUITS, T. DETERMINATION, (FOR
--

Material	Typical Usage	Typical Thickness, L_i (in.)	Feature From Figure 5-1	Thermal Conductivity, K_i $\left(\frac{W/in^2}{°C/in}\right)$	$\binom{1}{K_i}$ (Li) (in ² °C/W)
Silicon	Chip Device	0.010	A	2.20	.0045
GaAs	Chip Device	0.0070	A	.76	.0092
Au Eutectic	Chip Attach	0.0001	В	6.9	.000014
Solder	Chip/Substrate Attach	0.0030	B/E	1.3	.0023
Epoxy (Dielectric)	Chip/Substrate Attach	0.0035	B/E	.0060	.58
Epoxy (Conductive)	Chip Attach	0.0035	В	.15	.023
Thick Film Dielectric	Glass Insulating Layer	0.0030	С	.66	.0045
Alumina	Substrate, MHP	0.025	D	.64	.039
Beryllium Oxide	Substrate, PHP	0.025	D	6.6	.0038
Kovar	Case, MHP	0.020	F	.42	.048
Aluminum	Case, MHP	0.020	F	4.6	.0043
Copper	Case, PHP	0.020	F	9.9	.0020

Typical Hybrid Characteristics

NOTE: MHP: Multichip Hybrid Package, PHP: Power Hybrid Package (Pwr: ≥ 2W, Typically)

$$\theta_{\text{JC}} = \frac{\sum_{i=1}^{n} \left(\frac{1}{K_{i}}\right) \left(L_{i}\right)}{A}$$

n = Number of Material Layers

$$K_i = \text{Thermal Conductivity of i}^{\text{th}} \text{Material} \left(\frac{W/in^2}{\circ C/in}\right)$$
 (User Provided or From Table)

L_i = Thickness of ith Material (in) (User Provided or From Table)

A = Die Area (in²). If Die Area cannot be readily determined, estimate as follows: A = $[.00278 (No. of Die Active Wire Terminals) + .0417]^2$

Estimate T_J as Follows:

$$T_{J} = T_{C} + .9 (\theta_{JC}) (P_{D})$$

T_C = Hybrid Case Temperature (°C). If unknown, use the T_C Default Table shown in Section 5.11.

 θ_{JC} = Junction-to-Case Thermal Resistance (°C/W) (As determined above)

P_D = Die Power Dissipation (W)

Example 1: CMOS Digital Gate Array

Given: A CMOS digital timing chip (4046) in an airborne inhabited cargo application, case temperature 48°C, 75mW power dissipation. The device is procured with normal manufacturer's screening consisting of temperature cycling, constant acceleration, electrical testing, seal test and external visual inspection, in the sequence given. The component manufacturer also performs a B-level burn-in followed by electrical testing. All screens and tests are performed to the applicable MIL-STD-883 screening method. The package is a 24 pin ceramic DIP with a glass seal. The device has been manufactured for several years and has 1000 transistors.

$$\lambda_{p} = (C_{1}\pi_{T} + C_{2}\pi_{E})\pi_{Q}\pi_{L} \qquad \text{Section 5.1}$$

с ₁	=	.020	1000 Transistors ~ 250 Gates,	MOS C ₁ Table, Digital Column
π _T	=	.29	Determine T _J from Section 5.1 T _J = 48°C + (28°C/W)(.075W) = Determine π_T from Section 5.8	= 50°C
c ₂	z	.011	Section 5.9	
π _E	-	4.0	Section 5.10	
πQ	-	3.1	Section 5.10 Group 1 Tests Group 3 Tests (B-level) TOTAL $\pi_Q = 2 + \frac{87}{80} = 3.1$	50 Points <u>30 Points</u> 80 Points
πL	=	1	Section 5.10	
		$\lambda_{p} = [(.020)(.29)]$	+ (.011) (4)] (3.1)(1) = .15 Failur	e/10 ⁶ Hours

Example 2: EEPROM

Given: A 128K Flotox EEPROM that is expected to have a T_J of 80°C and experience 10,000 read/write cycles over the life of the system. The part is procured to all requirements of Paragraph 1.2.1, MIL-STD-883, Class B screening level requirements and has been in production for three years. It is packaged in a 28 pin DIP with a glass seal and will be used in an airborne uninhabited cargo application.

$$\pi_{\rm p} = (C_1 \pi_{\rm T} + C_2 \pi_{\rm E} + \lambda_{\rm cvc}) \pi_{\rm Q} \pi_{\rm L} \qquad \text{Section 5.2}$$

C ₁	E	.0034	Section 5.2
πT	=	3.8	Section 5.8
C_2	=	.014	Section 5.9

 π_E = 5.0
 Section 5.10

 π_Q = 2.0
 Section 5.10

 π_L = 1.0
 Section 5.10

 λ_{cvc} = .38
 Section 5.2:

$$\begin{split} \lambda_{\text{cyc}} &= \left[\begin{array}{c} A_1 & B_1 + \frac{A_2 B_2}{\pi_Q} \right] \pi_{\text{ECC}} \\ A_2 &= B_2 = 0 \text{ for Flotox} \\ \text{Assume No ECC, } \pi_{\text{ECC}} = 1 \\ A_1 &= .1, 7K \leq C \leq 15K \text{ Entry} \\ B_1 &= 3.8 \quad (\text{Use Equation 1 at bottom of } B_1 \text{ and } B_2 \text{ Table}) \\ \lambda_{\text{cyc}} &= A_1 B_1 = (.1)(3.8) = .38 \end{split}$$

 $\lambda_{\rm D}$ = [(.0034)(3.8) + (.014)(5.0) + .38] (2.0)(1) = .93 Failures/10⁶ Hours

Example 3: GaAs MMIC

Given: A MA4GM212 Single Pole Double Throw Switch, DC - 12 GHz, 4 transistors, 4 inductors, 8 resistors, maximum input P_D = 30 dbm, 16 pin hermetic flatpack, maximum T_{CH} = 145°C in a ground benign environment. The part has been manufactured for 1 year and is screened to Paragraph 1.2.1 of MIL-STD-883, Class B equivalent screen.

$$\lambda_{\rm p} = \left[C_1 \pi_{\rm T} \pi_{\rm A} + C_2 \pi_{\rm E} \right] \pi_{\rm L} \pi_{\rm Q} \qquad \text{Section 5.4}$$

C ₁	=	4.5	Section 5.4, MMIC Table, 4 Active Elements (See Footnote to
-	_	061	Table)
π _T	=	.061	Section 5.8, T _J = T _{CH} = 145°C
πA	-	3.0	Section 5.4, Unknown Application
C ₂	-	.0047	Section 5.9
πE	=	.50	Section 5.10
πL	-	1.5	Section 5.10
πQ	-	2.0	Section 5.10
		_	

$$\lambda_{p} = [(4.5)(.061)(3.0) + (.0047)(.5)] (1.5)(2.0) = 2.5 \text{ Failures}/10^{6} \text{ Hours}$$

NOTE: The passive elements are assumed to contribute negligibly to the overall device failure rate.

Example 4: Hybrid

Given: A linear multichip hybrid driver in a hermetically sealed Kovar package. The substrate is alumina and there are two thick film dielectric layers. The die and substrate attach materials are conductive epoxy and solder, respectively. The application environment is naval unsheltered, 65°C case temperature and the device has been in production for over two years. The device is

screened to MIL-STD-883, Method 5008, in accordance with Table VIII, Class B requirements. The hybrid contains the following components:

Active Components:	1	-	LM106 Bipolar Comparator/Buffer Die (13 Transistors)
·	1	-	LM741A Bipolar Operational Amplifier Die (24 Transistors)
	2	-	Si NPN Transistor
	2	-	Si PNP Transistor
	2	-	Si General Purpose Diodes
Passive Components:	2	-	Ceramic Chip Capacitors
	17	•	Thick Film Resistors
λ _p = []	ΣΝ _Ϲ λ	c] (1 + .2π _E) π _F π _Q π _L Section 5.5

1. Estimate Active Device Junction Temperatures

If limited information is available on the specific hybrid materials and construction characteristics the default case-to-junction temperature rises shown in the introduction to Section 5.12 can be used. When detailed information becomes available the following Section 5.12 procedure should be used to determine the junction-to-case (θ_{JC}) thermal resistance and T_J values for each component.

0	$\sum_{i=1}^{n} \left(\frac{1}{K_{i}}\right) (L_{i})$	
θJC =	A	

(Equation 1)

Layer	Figure 5-1 Feature		$ \begin{pmatrix} \frac{1}{K_i} \end{pmatrix} \begin{pmatrix} L_i \end{pmatrix} \\ (in^2 \circ C/W) \end{pmatrix} $
Silicon Chip	A		.0045
Conductive Epoxy	В		.023
Two Dielectric Layers	c	(2)(.0045) =	.009
Alumina Substrate	D		.039
Solder Substrate Attachment	E		.0023
Kovar Case	F		.048
		$\Sigma\left(\frac{1}{K_{i}}\right)\left(L_{i}\right) =$.1258

A = Die Area = [.00278 (No. Die Active Wire Terminals) + .0417

(Equation 2)

 $T_J = T_C + \theta_{JC} P_D$

(Equation 3)

 π_{T} : Section 5.8; π_{Q} , π_{L} Default to 1.0

	LM106	LM741A	Si NPN	Si PNP	Si Diode	Source
No. of Pins	8	14	3	3	2	Vendor Spec. Sheet
Power Dissipation, P _D (W)	.33	.35	.6	.6	.42	Circuit Analysis
Area of Chip (in. ²)	.0041	.0065	.0025	.0025	.0022	Equ. 2 Above
θ _{JC} (°C/W)	30.8	19.4	50.3	50.3	56.3	Equ. 1 Above
T _J (℃)	75	72	95	95	89	Equ. 3 Above

- 2. Calculate Failure Rates for Each Component:
 - A) LM106 Die, 13 Transistors (from Vendor Spec. Sheet)

$$\lambda_{\rm p} = \left[C_1 \pi_{\rm T} + C_2 \pi_{\rm E} \right] \pi_{\rm Q} \pi_{\rm L} \qquad \text{Section 5.1}$$

Because $C_2 = 0;$

- $\lambda_{p} = C_{1} \pi_{T} \pi_{Q} \pi_{L}$
 - = (.01)(3.8)(1)(1) = .038 Failures/10⁶ Hours

B) LM741 Die, 23 Transistors. Use Same Procedure as Above.

 $\lambda_{\rm p} = C_1 \pi_{\rm T} \pi_{\rm Q} \pi_{\rm L} = (.01)(3.1)(1)(1) = .031 \text{ Failures/10}^6 \text{ Hours}$

- C) Silicon NPN Transistor, Rated Power = 5W (From Vendor Spec. Sheet), V_{CE}/V_{CEO} = .6, Linear Application
 - $\lambda_{p} = \lambda_{b} \pi_{T} \pi_{A} \pi_{B} \pi_{S} \pi_{Q} \pi_{E}$ Section 6.3; π_{Q} , π_{E} Default to 1.0 = (.00074)(3.9)(1.5)(1.8)(.29)(1)(1) = .0023 Failures/10⁶ Hours
- D) Silicon PNP Transistor, Same as C.

 $\lambda_{\rm D}$ = .0023 Failures/10⁶ Hours

E) Silicon General Purpose Diode (Analog), Voltage Stress = 60%, Metallurgically Bonded Construction.

$$\lambda_{p} = \lambda_{b} \pi_{T} \pi_{S} \pi_{C} \pi_{Q} \pi_{E}$$

$$= (.0038)(6.3)(.29)(1)(1)(1)$$

$$= .0069 \text{ Failures/10}^{6} \text{ Hours}$$
Section 6.1; π_{Q} , π_{E} Default to 1.0

F) Ceramic Chip Capacitor, Voltage Stress = 50%, $T_A = T_{CASE}$ for the Hybrid, 1340 pF, 125°C Rated Temp.

(.0028)(1.4)(1)(1)

.0039 Failures/10⁶ Hours

$$\lambda_{\rm D} = \lambda_{\rm D} \pi_{\rm CV} \pi_{\rm Q} \pi_{\rm E}$$

Section 10.11; π_{Q} , π_{F} Default to 1.0

G) Thick Film Resistors, per instructions in Section 5.5, the contribution of these devices is considered insignificant relative to the overall hybrid failure rate and they may be ignored.

Overall Hybrid Part Failure Rate Calculation:

λp	Ŧ	$\left[\sum N_{C} \lambda_{C}\right] (1 + .2 \pi_{E}) \pi_{F} \pi_{Q} \pi_{L}$	
π _E	=	6.0	Section 5.10
π _F	=	5.8	Section 5.5
πQ	=	1	Section 5.10
π		1	Section 5.10
λp	=	[(1)(.038) + (1)(.031) + (2) (.002 + (2)(.0069) + (2)(.0039)](1 +	
λp	=	1.3 Failures/10 ⁶ Hours	

6.0 DISCRETE SEMICONDUCTORS, INTRODUCTION

The semiconductor transistor, diode and opto-electronic device sections present the failure rates on the basis of device type and construction. An analytical model of the failure rate is also presented for each device category. The various types of discrete semiconductor devices require different failure rate models that vary to some degree. The models apply to single devices unless otherwise noted. For multiple devices in a single package the hybrid model in Section 5.5 should be used.

The applicable MIL specification for transistors, and optoelectronic devices is MIL-S-19500. The quality levels (JAN, JANTX, JANTXV) are as defined in MIL-S-19500.

The temperature factor (π_T) is based on the device junction temperature. Junction temperature should be computed based on worse case power (or maximum power dissipation) and the device junction to case thermal resistance. Determination of junction temperatures is explained in Section 6.14.

Reference 28 should be consulted for further detailed information on the models appearing in this section.

6.1 DIODES, LOW FREQUENCY

SPECIFICATION

MIL-S-19500

DESCRIPTION

Low Frequency Diodes: General Purpose Analog, Switching, Fast Recovery, Power Rectifier, Transient Suppressor, Current Regulator, Voltage Regulator, Voltage Reference

 $\lambda_p = \lambda_b \pi_T \pi_S \pi_C \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Diode Type/Application	λ _b
General Purpose Analog Switching Power Rectifier, Fast Recovery Power Rectifier/Schottky	.0038 .0010 .069 .0030
Power Diode Power Rectifier with High Voltage Stacks Transient Suppressor/Varistor Current Regulator Voltage Regulator and Voltage Reference (Avalanche and Zener)	.0050/ Junction .0013 .0034 .0020

Temperature Factor - π_T (General Purpose Analog, Switching, Fast Recovery, Power Rectifier, Transient Suppressor)

FOW	Power Hectilier, Transient Suppressor)				
Т _Ј (°С)	π _T	T _၂ (°C)	۳ _T		
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	1.0 1.2 1.4 1.6 1.9 2.2 2.6 3.0 3.4 3.9 4.4 5.0 5.7 6.4 7.2 8.0	105 110 115 120 125 130 135 140 145 150 155 160 165 170 175	9.0 10 11 12 14 15 16 18 20 21 23 25 28 30 32		
$\pi_{T} = \exp\left(-3091\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$					
T _J = Junction Temperature (°C)					

Temperature Factor - π_T (Voltage Regulator, Voltage Reference,

and Current Regulator)					
Т _Ј (°С)	π _T	T _J (°C)	۳Ţ		
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	1.0 1.1 1.2 1.4 1.5 1.6 1.8 2.0 2.1 2.3 2.5 2.7 3.0 3.2 3.4 3.7	105 110 115 120 125 130 135 140 145 150 155 160 165 170 175	3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.4 6.7 7.1 7.5 7.9 8.3 8.7		
$\pi_{T} = \exp\left(-1925\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$					
T _J = Junction Temperature (°C)					

.....

6.1 DIODES, LOW FREQUENCY

Electrical Stress Factor - π_S				
Stress	π _S			
Transient Suppressor, Voltage Regulator, Voltage Reference, Current Regulator	1.0			
All Others: $V_{s} \le .30$ $.3 < V_{s} \le .40$ $.4 < V_{s} \le .50$ $.5 < V_{s} \le .60$ $.6 < V_{s} \le .70$ $.7 < V_{s} \le .80$ $.8 < V_{s} \le .90$ $.9 < V_{s} \le 1.00$	0.054 0.11 0.19 0.29 0.42 0.58 0.77 1.0			
For All Except Transient Suppressor, Voltage Regulator, Voltage Reference, or Current Regulator $\pi_{s} = .054$ (V _s ≤ .3) $\pi_{s} = V_{s}^{2.43}$ (.3 < V _s ≤ 1)				

المراجع والمستر والمسولونية

Quality Factor - π_Q				
Quality	πQ			
JANTXV	0.7			
JANTX	1.0			
JAN	2.4			
Lower	5.5			
Plastic	8.0			

Environment Factor - π _E		
Environment	π _E	
G _B	1.0	
G _F	6.0	
GM	9 .0	
NS	9.0	
NU	19	
A _{IC}	13	
A _{IF}	29	
AUC	20	
AUF	43	
A _{RW}	24	
S _F	.50	
M _F	14	
м _L С _L	32	
Cر	320	

 V_s = Voltage Stress Ratio = $\frac{Voltage Applied}{Voltage Rated}$

Voltage is Diode Reverse Voltage

Contact Construction Factor - π_C

	•
Contact Construction	π _C
Metallurgically Bonded	1.0
Non-Metallurgically Bonded and Spring Loaded Contacts	2.0

6.2 DIODES, HIGH FREQUENCY (MICROWAVE, RF)

SPECIFICATION

MIL-S-19500

DESCRIPTION

Si IMPATT; Bulk Effect, Gunn; Tunnel, Back; Mixer, Detector, PIN, Schottky; Varactor, Step Recovery

$\lambda_p = \lambda_b \pi_T \pi_A \pi_R \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

Diode Type	λο
Si IMPATT (≤ 35 GHz)	.22
Gunn/Bulk Effect	.18
Tunnel and Back (Including	
Mixers, Detectors)	.0023
PIN	.0081
Schottky Barrier (Including Detectors) and Point Contact	
(200 MHz \leq Frequency \leq 35 GHz)	.027
Varactor and Step Recovery	.0025
Varacion and Step necovery	.0025

Temperature	Factor	-	π_{T}
All Tunne Ex			m

(All Types Except IMPATT)			
T _J (°C)	^π T	T _၂ (°C)	۳Ţ
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	1.0 1.1 1.3 1.4 1.6 1.7 1.9 2.1 2.3 2.5 2.8 3.0 3.3 3.5 3.8 4.1	105 110 115 120 125 130 135 140 145 150 155 160 165 170 175	4.4 4.8 5.1 5.5 6.3 6.7 7.1 7.6 8.0 8.5 9.0 9.5 10 11
$\pi_{T} = \exp\left(-2100\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$			
T _J = Junction Temperature (°C)			

Temperature Factor- π_{T}	-
-------------------------------	---

(IMPATT)			
T _J (°C)	π _T	T _J (℃)	۳ _T
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	1.0 1.3 1.8 2.3 3.0 3.9 5.0 6.4 8.1 10 13 16 19 24 29 35	105 110 115 120 125 130 135 140 145 150 155 160 165 170 175	42 50 60 71 84 99 120 140 160 180 210 250 280 320 370
$\pi_{T} = \exp\left(-5260\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$			
T _J = Junction Temperature (°C)			

Application Factor - π_{A}

	<u> </u>
Diodes Application	π _A
Varactor, Voltage Control	.50
Varactor, Multiplier	2.5
All Other Diodes	1.0

.

6.2 DIODES, HIGH FREQUENCY (MICROWAVE, RF)

_

Power Rating Factor - π_R		
Rated Power, Pr (Watts)	π _R	
PIN Diodes $P_r \leq 10$.50	
$10 < P_r \le 100$	1.3	
$100 < P_r \le 1000$	2.0	
1000 < P _r ≤ 3000	2.4	
All Other Diodes	1.0	
PIN Diodes π _R = .326 <i>ίπ</i> (P _r)25		
All Other Diodes $\pi_R = 1.0$		

•-----

Quality Factor - π_Q

(All Types Except Schottky) Quality * #O		
	^π Q	
JANTXV	.50	
JANTX	1.0	
JAN	5.0	
Lower	25	
Plastic	50	
 For high frequency part classes not specified to MIL-S-19500 equipment quality classes are defined as devices meeting the same requirements as MIL-S-19500. 		

Quality Factor - π_Q		
(Schottky)		
Quality*	πQ	
JANTXV	.50	
JANTX	1.0	
JAN	1.8	
Lower 2.5		
Plastic –		
 For high frequency part classes not specified to MIL-S-19500 equipment quality classes are defined as devices meeting the same requirements as MIL-S-19500. 		

Environment Factor - $\pi_{\rm F}$

Environment	π _E
GB	1.0
G _F	2.0
G _F G _M	5.0
NS	4.0
NU	11
AIC	4.0
^А Ю ^А IF	5.0
AUC	7.0
AUF	12
A _{RW}	16
S _F	.50
M _F	9.0
ML	24
cL	250

TRANSISTORS, LOW FREQUENCY, BIPOLAR 6.3

•

SPECIFICATION MIL-S-19500

DESCRIPTION

NPN (Frequency < 200 MHz) PNP (Frequency < 200 MHz)

 $\lambda_p = \lambda_b \pi_T \pi_A \pi_R \pi_S \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Туре	λ _b
NPN and PNP	.00074

Application Factor - π_A			
Application ^π A			
Linear Amplification	1.5		
Switching	.70		

	Temperatu	re Factor - π	۲
T _J (°C)	π _T	T _J (°C)	π _T
25 30 35 40 45 50 65 70 75 80 85 90 95 100	1.0 1.1 1.3 1.4 1.6 1.7 1.9 2.1 2.3 2.5 2.8 3.0 3.3 3.6 3.9 4.2	105 110 115 120 125 130 135 140 145 150 155 160 165 170 175	4.5 4.8 5.2 5.9 6.3 6.8 7.2 7.7 8.1 8.6 9.1 9.7 10 11
π _T =	exp(- 2114	$\left(\frac{1}{T_{J}+273}\right)$	$\left(\frac{1}{298}\right)$
T _J =	Junction Temp	perature (°C)	

norature Factor

Power Rating Factor - no

Power Hating Factor - π_R				
Rated Power (Pr, Wa	tts) π _R			
P _r ≤ .1	.43			
P _r = .5	.77			
P _r = 1.0	1.0			
$P_{r} = 5.0$	1.8			
$P_{r} = 10.0$	2.3			
P _r = 50.0	4.3			
P _r = 100.0	5.5			
P _r = 500.0	10			
π _R = .43 π _R = (P _r) ^{.37}	Rated Power ≤ .1W Rated Power > .1W			

г

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

1

TRANSISTORS, LOW FREQUENCY, BIPOLAR 6.3

Voltage Stress Factor - π_S

En	viron	ment	F	actor	,
			•		

		3
Applied V _C	E/Rated VCEO	πs
$\begin{array}{c} 0 < V_{S} \leq \\ .3 < V_{S} \leq \\ .4 < V_{S} \leq \\ .5 < V_{S} \leq \\ .6 < V_{S} \leq \\ .7 < V_{S} \leq \\ .8 < V_{S} \leq \\ .9 < V_{S} \leq \end{array}$	5 .4 ≤ .5 ≤ .6 ≤ .7 ≤ .8 ≤ .9	.11 .16 .21 .29 .39 .54 .73 1.0
······································		
^π s -	.045 exp (3.1(Vs))	(0 < V _S ≤ 1.0)
V _s -	Applied VCE / Rated	VCEO
V _{CE} =	Voltage, Collector to	Emitter
V _{CEO} -	Voltage, Collector to Open	Emitter, Base

Environment Factor - π_E		
Environment	πE	
G _B	1.0	
G _F	6.0	
G _F G _M	9.0	
NS	9.0	
NU	19	
AIC	13	
AIF	29	
Auc	20	
A _{UF}	43	
A _{RW}	24	
S _F	.50	
M _F	14	
ML	32	
СL	320	

Quality Factor - π_Q

πQ
.70
1.0
2.4
5.5
8.0

6.4 TRANSISTORS, LOW FREQUENCY, SI FET

SPECIFICATION MIL-S-19500

DESCRIPTION

N-Channel and P-Channel Si FET (Frequency ≤ 400 MHz)

$\lambda_p = \lambda_b \pi_T \pi_A \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate -	λ _b
Transistor Type	λ _b
MOSFET	.012
JFET	.0045

Temperature Factor - π_T

T ၂ (°C)	^π T	Т _Ј (°С)	πΤ
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	1.0 1.1 1.2 1.4 1.5 1.6 1.8 2.0 2.1 2.3 2.5 2.7 3.0 3.2 3.4 3.7	105 110 115 120 125 130 135 140 145 150 155 160 165 170 175	3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.4 6.7 7.1 7.5 7.9 8.3 8.7
$\pi_{T} = \exp\left(-1925\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$			
T _J = Junction Temperature (°C)			

Quality Factor - π_Q		
Quality	π _Q	
JANTXV	.70	
JANTX	1.0	
JAN	2.4	
Lower	5.5	
Plastic	8.0	

н ·

I≣ – 10 I

Application (P _r , Rated Output Power)	π _A
Linear Amplification (P _r < 2W)	1.5
Small Signal Switching	.70
Power FETs (Non-linear, P _r ≥ 2W)	
$2 \le P_r < 5W$	2.0
$5 \leq P_r < 50W$	4.0

 $50 \leq P_r < 250W$

 $P_r \ge 250W$

8.0

10

Application Factor - π_A

Environment Factor - π_E		
Environment	πE	
G _B	1.0	
G _F	6.0	
G _M	9.0	
NS	9.0	
NU	19	
A _{IC} A _{IF} A _{UC} A _{UF}	13	
AIF	29	
AUC	20	
AUF	43	
ARW	24	
S _F	.50	
M _F	14	
ML	32	
ML CL	320	

6-8

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

· 25 · 1

1

6.5 TRANSISTORS, UNIJUNCTION

SPECIFICATION MIL-S-19500

.

DESCRIPTION Unijunction Transistors

$\lambda_p = \lambda_b \pi_T \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ _b	
------------------------------------	--

Туре	λ _b
All Unijunction	.0083

Temperature Factor - π_T					
(°C) _ل T	πŢ	Τ _J (°C) π _T			
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	1.0 1.1 1.3 1.5 1.7 1.9 2.1 2.4 2.7 3.0 3.3 3.7 4.0 4.4 4.9 5.3	105 110 115 120 125 130 135 140 145 150 155 160 165 170 175	5.8 6.4 6.9 7.5 8.1 8.8 9.5 10 11 12 13 13 14 15 16		
$\pi_{T} = \exp\left(-2483\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$					
T _J = Junction Temperature (°C)					

ı.

r

Quality Factor - π_Q				
Quality	π _Q			
JANTXV	.70			
JANTX	1.0			
JAN	2.4			
Lower	5.5			
Plastic	8.0			

Environment Factor - π_E				
Environment	π _E			
G _B	1.0			
G _F	6.0			
G _B G _F GM NS	9.0			
NS	9.0			
NU	19			
A _{IC} A _{IF} A _{UC}	13			
AIF	29			
AUC	20			
AUF	43			
ARW	24			
S _F	.50			
M _F	14			
ML	32			
CL	320			

ı .u

ł

I.

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

.

6.6 TRANSISTORS, LOW NOISE, HIGH FREQUENCY, BIPOLAR

SPECIFICATION

MIL-S-19500

1

DESCRIPTION

Bipolar, Microwave RF Transistor (Frequency > 200 MHz, Power < 1W)

 $\lambda_p = \lambda_b \pi_T \pi_R \pi_S \pi_Q \pi_E$ Failures/10⁶ Hours

Application Note: The model applies to a single die (for multiple die use the hybrid model). The model does apply to ganged transistors on a single die.

Base Failure Rate - $\lambda_{\rm b}$

Туре	λ _b
All Types	.18

Temperature Factor - π_T					
T _J (°C)	π _T	Т _Ј (°С)	π _T		
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	1.0 1.1 1.3 1.4 1.6 1.7 1.9 2.1 2.3 2.5 2.8 3.0 3.3 3.6 3.9 4.2	105 110 115 120 125 130 135 140 145 150 155 160 165 170 175	4.5 4.8 5.2 5.6 5.9 6.3 6.8 7.2 7.7 8.1 8.6 9.1 9.7 10 11		
$\pi_{T} = \exp\left(-2114\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$					
T _J = Junction Temperature (°C)					

Power Rating Factor - π _R					
Rated Power (Pr, Watts)	π _R				
P _r ≤ .1	.43				
.1 < P _r ≤ .2	.55				
.2 < P _r ≤ .3	.64				
$.3 < P_{f} \le .4$.71				
$.4 < P_r \le .5$.77				
.5 < Pr ≤ .6	.83				
.6 < Pr ≤ .7	.88				
.7 < P _r ≤ .8	.92				
.8 < P _r ≤ .9	.96				
π _R = .43	P _r ≤.1W				
$\pi_{\rm R} = ({\rm P_r})^{-37}$	P _r >.1₩				

Voltage Stress Factor - π_s				
Applied VCE/Rated VCEO	π _s			
0 < V _s ≤ .3	.11			
$.3 < V_{g} \le .4$.16			
$.4 < V_{s} \le .5$.21			
.5 < V _s ≤ .6	.29			
.6 < V ₈ ≤ .7	.39			
.7 < V ₈ ≤ .8	.54			
.8 < V _s ≤ .9	.73			
$.9 < V_{s} \le 1.0$	1.0			
π _s = .045 exp (3.1(Vs)) (0 < V _s ≤ 1.0)				
V _s = Applied V _{CE} / Rated V _{CEO}				
V _{CE} - Voltage, Collector to Emitter				
V _{CEO} = Voltage, Collector to En Open	mitter, Base			

6-10

.

6.6 TRANSISTORS, LOW NOISE, HIGH FREQUENCY, BIPOLAR

Quality Factor - π_Q

Quality	^π Q
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0
	مغريب وانتثرت بالمراهنة والمستعمور بالمتعالي بوران العور

NOTE: For these devices, JANTXV quality class must include IR Scan for die attach and screen for barrier layer pinholes on gold metallized devices.

ı =

Environment Factor - π_{E}				
Environment	π _E			
G _B	1.0			
G _B G _F	2.0			
G _M	5.0			
NS	4.0			
NU	11			
AIC	4.0			
A _{IF}	5.0			
A _{UC}	7.0			
AUF	12			
A _{RW}	16			
S _F	.50			
MF	9.0			
ML	24			
м _L С _L	250			

Environment Footer

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

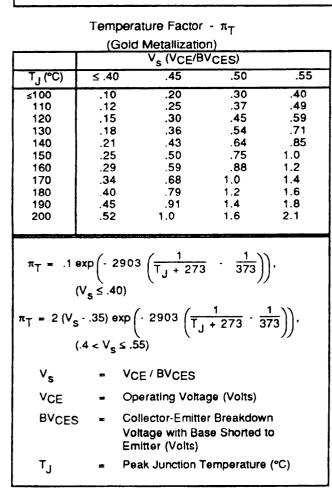
.

6.7 TRANSISTORS, HIGH POWER, HIGH FREQUENCY, BIPOLAR

SPECIFICATION MIL-S-19500

MIL-S-19500

DESCRIPTION


Power, Microwave, RF Bipolar Transistors (Average Power \geq 1W)

$\lambda_p = \lambda_b \pi_T \pi_A \pi_M \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λh

Frequency				Output Por	wer (Watts)					
(GHz)	1.0	5.0	10	50	100	200	300	400	500	600
≤ 0.5	.038	.039	.040	.050	.067	.12	.20	.36	.62	1.1
1	.046	.047	.048	.060	.080	.14	.24	.42	.74	1.3
2	.065	.067	.069	.086	.11	.20	.35			
3	.093	.095	.098	.12	.16	.28				
4	.13	.14	.14	.17	.23					
r	.19	.19	.20	.25						

NOTE: Output power refers to the power level for the overall packaged device and not to individual transistors within the package (if more than one transistor is ganged together). The output power represents the power output from the active device and should not account for any duty cycle in pulsed applications. Duty cycle is accounted for when determining π_A .

Temperature Factor - π_T

	(Aluminum Metallization)						
	V _s (V _{CE} /BV _{CES})						
T _J (℃)	≤ .40	.45	.50	.55			
≤100 110 120 130 140 150 160 170 180 190 200	.38 .57 .84 1.2 1.7 2.4 3.3 4.4 5.9 7.8 10	.75 1.1 1.7 2.4 3.4 4.7 6.5 8.8 12 15 20	1.1 1.7 2.5 3.6 5.1 7.1 9.7 13 18 23 30	1.5 2.3 3.3 4.8 9.5 13 18 23 31 40			
$\pi_{T} = .38 \exp\left(-5794 \left(\frac{1}{T_{J} + 273} - \frac{1}{373}\right)\right),$ $(V_{s} \le .40)$ $\pi_{T} = 7.55 \left(V_{s}35\right) \exp\left(-5794 \left(\frac{1}{T_{J} + 273} - \frac{1}{373}\right)\right),$ $(.4 < V_{s} \le .55)$							
۷ _s	- Vo	E / BVCES					
VCE	 Operating Voltage (Volts) 						
BVCES	Vo	 Collector-Emitter Breakdown Voltage with Base Shorted to Emitter (Volts) 					
Тј	= Pe	 Peak Junction Temperature (°C) 					

. .

6.7 TRANSISTORS, HIGH POWER, HIGH FREQUENCY, BIPOLAR

Application Factor - π_A				
Application	Application Duty Factor			
CW	N/A	7.6		
Pulsed	≤ 1% 5% 10% 15% 20% 25% ≥ 30%	.46 .70 1.0 1.3 1.6 1.9 2.2		
$\pi_{A} = 7.6, CW$				
$\pi_A = .06$ (Duty Factor %) + .40 , Pulsed				

Quality	π _Q	
JANTXV	.50	
JANTX	1.0	
JAN	2.0	
Lower	5.0	
NOTE: For these devices, JANTXV quality class must include IR Scan for die attach and screen for barrier layer pinholes on gold metalfized devices.		

Quality Factor - π_Q

Environment Factor - π_{E}

Matching Network F	actor -	πΜ
--------------------	---------	----

^π M
1.0
2.0
4.0

_.

12 - 1 -

~

	"E
Environment	π _E
G _B	1.0
G _F	2.0
G _M	5.0
NS	4.0
NU	11
	4.0
A _{IC} A _{IF}	5.0
AUC	7.0
AUF	12
ARW	16
S _F	.50
MF	9.0
ML	24
c	250

. . . .

÷.,

· . · .

. . . .

. .

6.8 TRANSISTORS, HIGH FREQUENCY, GAAs FET

SPECIFICATION

MIL-S-19500

DESCRIPTION

GaAs Low Noise, Driver and Power FETs (≥ 1GHz)

$\lambda_{p} = \lambda_{b} \pi_{T} \pi_{A} \pi_{M} \pi_{Q} \pi_{E}$ Failures/10⁶ Hours

Operating			Average Out	put Power (W	/atts)		
Frequency (GHz)	< .1	.1	.5	1	2	4	6
1	.052			-			
4	.052	.054	.066	.084	.14	.36	.96
5	.052	.083	.10	.13	.21	.56	1.5
6	.052	.13	.16	.20	.32	.85	2.3
7	.052	.20	.24	.30	.50	1.3	3.5
8 9	.052	.30	.37	.47	.76	2.0	
9 10	.052 .052	. 46 .71	. 56 .87	.72 1.1	1.2 1.8		
	.052	., ,			1.0		
λ _b = .052			1 ≤ F ≤ 10,	P < .1			
λ _b = .0093	exp(.429(F) + .4	486(P))	4 ≤ F ≤ 10,	.1 ≤ P ≤ 6			
F = Frequ	ency (GHz)		P - Ave	rage Output F	ower (Watts)		

Base Failure Rate - λ_h

The average output power represents the power output from the active device and should not account for any duty cycle in pulsed applications.

Temperature Factor - π_T				
T _C (°C)	πŢ	T _C (℃)	π _T	
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	1.0 1.3 1.6 2.1 2.6 3.2 4.0 4.9 5.9 7.2 8.7 10 12 15 18 21	105 110 115 120 125 130 135 140 145 150 155 160 165 170 175	24 28 33 38 44 50 58 66 75 85 97 110 120 140 150	
$\pi_{\rm T} = \exp\left(-4485\left(\frac{1}{{\rm T}_{\rm C}+273}-\frac{1}{298}\right)\right)$				
T _C = Channel Temperature (°C)				

Temperature Factor - π_{T}

Application Factor - π_{A}

<u>π</u> Α
1
4

6.8 TRANSISTORS, HIGH FREQUENCY, GaAs FET

Matching Network Factor - π_M

1

Matching	^π M
Input and Output	1.0
Input Only	2.0
None	4.0

Quality	Factor	-	π_{O}
---------	--------	---	-----------

Quality	πQ
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0

Environment Factor - π_E		
Environment	π _E	
G _B	1.0	
G _B G _F	2.0	
G _M	5.0	
NS	4.0	
NS NU	11	
	4.0	
A _{IC} A _{IF}	5.0	
AUC	7.0	
AUF	12	
A _{RW}	16	
s _F	.50	
M _F	7.5	
ML	24	
м _L С _L	250	

TRANSISTORS, HIGH FREQUENCY, SI FET 6.9

SPECIFICATION

MIL-S-19500

ł

DESCRIPTION Si FETs (Avg. Power < 300 mW, Freq. > 400 MHz)

$\lambda_p = \lambda_b \pi_T \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ _b		
Transistor Type	λ _b	
MOSFET	.060	
JFET	.023	

T _J (°C)	۳T	Т _Ј (°С)	π _T
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	1.0 1.1 1.2 1.4 1.5 1.6 1.8 2.0 2.1 2.3 2.5 2.7 3.0 3.2 3.4 3.7	105 110 115 120 125 130 135 140 145 150 155 160 165 170 175	3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.4 6.7 7.1 7.5 7.9 8.3 8.7
$\pi_{T} = \exp\left(-1925\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$ $T_{J} = Junction Temperature (°C)$			

i

T٢	mn	ora	III	Factor	-	π
	31110	e a	UIC	racior	•	7.7

Quality Factor - π_Q		
Quality	πQ	
JANTXV	.50	
JANTX	1.0	
JAN	2.0	
Lower	5.0	

Environment Factor - #E		
Environment	π _E	
G _B	1.0	
G _F	2.0	
G _F G _M	5.0	
NS	4.0	
NU	11	
A _{IC}	4.0	
A _{IF}	5.0	
AUC	7.0	
AUF	12	
A _{RW}	16	
S _F	.50	
M _F	9.0	
ML	24	
Mլ Շլ	250	

r

ı.

L

ŧ

t

6.10 THYRISTORS AND SCRS

SPECIFICATION MIL-S-19500

DESCRIPTION Thyristors SCRs, Triacs

$\lambda_p = \lambda_b \pi_T \pi_R \pi_S \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ _b		
Device Type	λ _b	
All Types	.0022	

Temperature Factor - π_{T}			
T_(℃)	πΤ	T _J (℃)	π _T
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	1.0 1.2 1.4 1.6 1.9 2.2 2.6 3.0 3.4 3.9 4.4 5.0 5.7 6.4 7.2 8.0	105 110 115 120 125 130 135 140 145 150 155 160 165 170 175	8.9 9.9 11 12 13 15 16 18 19 21 23 25 27 30 32
$\pi_{T} = \exp\left(-3082\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$			
T _J = Junction Temperature (°C)			

Current Rating Factor - π_{R}

Rated Forward Current (I _{frms} (Amps))	[#] R	
$\begin{array}{c} .05\\ .10\\ .50\\ 1.0\\ 5.0\\ 10\\ 20\\ 30\\ 40\\ 50\\ 60\\ 70\\ 80\\ 90\\ 100\\ 110\\ 120\\ 130\\ 140\\ 150\\ 160\\ 170\\ 175\\ \end{array}$.30 .40 .76 1.0 1.9 2.5 3.3 3.9 4.4 4.8 5.1 5.5 5.8 6.0 6.3 6.6 6.8 7.0 7.2 7.4 7.6 7.8 7.9	
$\pi_{R} = (l_{frms})^{.40}$		
l _{frms} = RMS Rated Forwar	d Current (Amps)	

I.

2

I.

6.10 THYRISTORS AND SCRS

.

.

V _S (Blocking Voltage Applied/ Blocking Voltage Rated)	π _S
$V_{s} \leq .30$.10
.3 < $V_{s} \leq .4$.18
.4 < $V_{s} \leq .5$.27
.5 < $V_{s} \leq .6$.38
.6 < $V_{s} \leq .7$.51
.7 < $V_{s} \leq .8$.65
.8 < $V_{s} \leq .9$.82
.9 < $V_{s} \leq 1.0$	1.0
$\pi_{\rm S} = .10$	(V _s ≤ 0.3)
$\pi_{\rm S} = (V_{\rm S})^{1.9}$	(V _s > 0.3)

Voltage Stress Factor - π_S

Environment Factor - #E		
Environment	π _E	
G _B	1.0	
G _F	6.0	
G _F G _M	9.0	
NS	9.0	
NU	19	
A _{IC}	13	
AIF	29	
A _{IC} A _{IF} A _{UC}	20	
AUF	43	
ARW	24	
S _F	.50	
M _F	14	
ML	32	
ML CL	320	

Qual	lity	Factor	$-\pi_{O}$
------	------	--------	------------

Quality	π _Q
JANTXV	0.7
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

.....

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

.

0.0

.

6.11 OPTOELECTRONICS, DETECTORS, ISOLATORS, EMITTERS

SPECIFICATION MIL-S-19500 DESCRIPTION

Photodetectors, Opto-isolators, Emitters

$\lambda_p = \lambda_b \pi_T \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_{b}		
Optoelectronic Type	λω	
Photodetectors Photo-Transistor	.0055	
Photo-Diode	.0040	
Opto-Isolators Photodiode Output, Single Device Phototransistor Output, Single Device Photodarlington Output, Single Device Light Sensitive Resistor, Single Device Photodiode Output, Dual Device Phototransistor Output, Dual Device Photodarlington Output, Dual Device Light Sensitive Resistor, Dual Device	.0025 .013 .013 .0064 .0033 .017 .017 .0086	
Emitters		
Infrared Light Emitting Diode (IRLD)	.0013	
Light Emitting Diode (LED)	.00023	

Quality Factor - π_Q		
Quality	πQ	
JANTXV	.70	
JANTX	1.0	
JAN	2.4	
Lower	5.5	
Plastic	8.0	

Environment Factor - π_E		
Environment	πΕ	
G _B	1.0	
	2.0	
G _F GM N _S	8.0	
N _S	5.0	
NU	12	
AiC	4.0	
AIF	6.0	
AUC	6.0	
AUF	8.0	
A _{RW}	17	
S _F	.50	
MF	9.0	
ML	24	
۲	450	

Temperature Factor	-	π_{T}
· · · · · · · · · · · · · · · · · · ·		

T _J (°C)	π _T	Т _Ј (°С)	π _T
25 30 35 40 45 50 55 60 65 70	1.0 1.2 1.4 1.6 1.8 2.1 2.4 2.7 3.0 3.4	75 80 85 90 95 100 105 110 115	3.8 4.3 4.8 5.3 5.9 6.6 7.3 8.0 8.8
$\pi_{T} = \exp\left(-2790\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$			
T _J = Junction Temperature (°C)			

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

DESCRIPTION

 $\lambda_p = \lambda_b \pi_T \pi_O \pi_F$ Failures/10⁶ Hours

Alphanumeric Display

6.12 OPTOELECTRONICS, ALPHANUMERIC DISPLAYS

λ

Diode Array

Display

.00026

.00030

.00043

.00047

.00060

.00064

.00077

.00081

.00094

.0011

.0013

.0015

.0016

.0018

.0020

.0021

.0025

.0026

SPECIFICATION

MIL-S-19500

Number

of Characters

1 w/Logic Chip

2 w/Logic Chip

4 w/Logic Chip

6

7 8

9

10

11 12

13

14

15

6-20

3 3 w/Logic Chip

Base Failure Rate - λ_b

Segment

.00043

.00047

.00086 .00090

.0013

.0013

.0017

.0018

.0022

.0026

.0030

.0034

.0039

.0043

.0047

.0052

.0056

.0060

.0065

Display

ኢ	-	.00043(C)	+ 240,	for Segment	Displays
·π			· · · · · · · · · · · · · · · · · · ·		

 $\lambda_{\rm b}$ = .00009 + .00017(C) + $\lambda_{\rm 1C}$, Diode Array Displays

C = Number of Characters

 $\lambda_{\rm HC}$ = .000043 for Displays with a Logic Chip

= 0.0 for Displays without Logic Chip

NOTE: The number of characters in a display is the number of characters contained in a <u>single</u> sealed package. For example, a 4 character display comprising 4 separately packaged single characters mounted together would be 4-one character displays, not 1-four character display.

Quality Factor - TO

Quality	^π Q
JANTXV	0.7
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

ion paralule i actor - nT				
T_J (℃)	π _T	T_J (°C)	π _T	
25 30 35 40 45 50 55 60 65 70	1.0 1.2 1.4 1.6 1.8 2.1 2.4 2.7 3.0 3.4	75 80 85 90 95 100 105 110 115	3.8 4.3 4.8 5.3 5.9 6.6 7.3 8.0 8.8	
$\pi_{T} = \exp\left(-2790\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$				
T _J = Junction Temperature (°C)				

Environment Factor - π_E

Environment	πE
GB	1.0
G _F	2.0
G _B G _F GM N _S	8.0
NS	5.0
NU	12
AIC	4.0
A _{IC} A _{IF}	6.0
AUC	6.0
A _{UC} A _{UF}	8.0
A _{RW}	17
S _F	.50
M _F	9.0
Μլ	24
Mլ C	450

Temperature Factor - π_T

6.13 OPTOELECTRONICS, LASER DIODE

SPECIFICATION MIL-S-19500

DESCRIPTION Laser Diodes with Optical Flux Densities < 3 MW/cm² and Forward Current < 25 amps

 $\lambda_{p} = \lambda_{b} \pi_{T} \pi_{Q} \pi_{I} \pi_{A} \pi_{P} \pi_{E}$ Failures/10⁶ Hours

Base Failure Rate - λ_h

ъ
23
65

Temperature Factor - π_T		
T _J (℃)	πΤ	
25 30 35 40 45 50 55 60 65 70 75	1.0 1.3 1.7 2.1 2.7 3.3 4.1 5.1 6.3 7.7 9.3	
$\pi_{T} = \exp\left(-4635\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$ $T_{J} = Junction Temperature (°C)$		

Quality Factor - TO

Quality	πQ
Hermetic Package	1.0
Nonhermetic with Facet Coating	1.0
Nonhermetic without Facet Coating	3.3
1	

Forward Current Factor, π_i

Forward Peak Current (Amps)	π	
.050	0.13	
.075	0.17	
.1	0.21	
.5	0.62	
1.0	1.0	
2.0	1.6	
3.0	2.1	
4.0	2.6	
5.0	3.0	
10	4.8	
15	6.3	
20	7.7	
25	8.9	
$\pi_{ } = (1)^{.68}$		
I = Forward Peak Current (Amp	os), i≤25	
NOTE: For Variable Current Sources, use the Initial Current Value.		

Application Factor π_A

Application	Duty Cycle	π _A		
OW		4.4		
Pulsed	.1	.32 .45		
	.2	.45		
	.2 .3	.55		
	.4	.63		
	.4 .5	.71		
	.6	.77 .84		
	.7	.84		
	.8	.89		
	.9	.95		
	1.0	1.00		

$\pi_A = 4.4$, CW

 $\pi_A =$ Duty Cycle ^{0.5}, Pulsed

NOTE: A duty cycle of one in pulsed application represents the maximum amount it can be driven in a pulsed mode. This is different from continuous wave application which will not withstand pulsed operating levels on a continuous basis.

OPTOELECTRONICS, LASER DIODE 6.13

• • • •

Power	Degra	dation	Factor	$-\pi_P$
-------	-------	--------	--------	----------

Ratio Pr/Ps	۳p
0.00 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95	.50 .53 .56 .59 .63 .67 .71 .77 .83 .91 1.0 1.1 1.3 1.4 1.7 2.0 2.5 3.3 5.0 10
$\pi_{\rm P} = \frac{1}{2 (1 - \frac{{\rm Pr}}{{\rm Ps}})} \qquad 0 < \frac{{\rm P}}{{\rm P}}$	<u>r</u> ≤ .95 s ≤ .95
Ps = Rated Optical Power Output	rt (m₩)
Pr = Required Optical Power Ou	tput (mW)
NOTE: Each laser diode must be repla	aced when power

Environment Factor - #E		
Environment	π _E	
GB	1.0	
G _F	2.0	
G _M	8.0	
Ns	5.0	
NU	12	
	4.0	
А _Ю А _{IF}	6.0	
AUC	6.0	
AUF	8.0	
A _{RW}	17	
S _F	.50	
M _F	9.0	
ML	24	
M _L C _L	450	

NOTE: Each laser diode must be replaced when power output falls to Pr for failure rate prediction to be valid.

6.14 DISCRETE SEMICONDUCTORS, T. DETERMINATION

Ideally, device case temperatures should be determined from a detailed thermal analysis of the equipment. Device junction temperature is then calculated with the following relationship:

where:

T_

- Junction Temperature (°C)

- T_C = Case Temperature (°C). If no thermal analysis exists, the default case temperatures shown in Table 6-1 should be assumed.
- $\theta_{\rm JC}$ = Junction-to-Case Thermal Resistance (°C/W). This parameter should be determined from vendor, military specification sheets or Table 6-2, whichever is greater. It may also be estimated by taking the reciprocal of the recommended derating level. For example, a device derating recommendation of .16 W/°C would result in a $\theta_{\rm JC}$ of 6.25 °C/W. If $\theta_{\rm JC}$ cannot be determined assume a $\theta_{\rm JC}$ value of 70°C/W.

P = Device Worse Case Power Dissipation (W)

The models are not applicable to devices at overstress conditions. If the calculated junction temperature is greater than the maximum rated junction temperature on the MIL slash sheets or the vendor's specifications, whichever is smaller, then the device is overstressed and these models ARE NOT APPLICABLE.

Environment	T _C (℃)
G _R	35
G _F	45
G _B G _F G _M N _S N _U	50
NS	45
NU	50
A _{IC} A _{IF} A _{UC} A _{UF} A _{RW}	60
A _{IF}	60
AUC	75
A _{UF}	75
ARW	60
S _F	35
M _F	50
ML CL	60
cL	45

Table 6-1: Default Case Temperatures (T_C) for All Environments

6.14 DISCRETE SEMICONDUCTORS, T_J DETERMINATION

Table 6-2: Approximate Junction-to-Case Thermal Resistance (θ_{JC}) for Semiconductor Devices in Various Package Sizes*

Package Type	θJC (°C∕W)	Package Type	θJC (°C∕W)
Package Type TO-1 TO-3 TO-5 TO-8 TO-9 TO-12 TO-18 TO-28 TO-33 TO-39 TO-41 TO-44 TO-45 TO-52 TO-53 TO-57 TO-59 TO-60 TO-61 TO-63 TO-72 TO-83 TO-72 TO-83 TO-99 TO-72 TO-83 TO-99 TO-92 TO-94 TO-99 TO-126 TO-127 TO-204	θ _{JC} (°C/W) 70 10 70 70 70 70 70 70 70 70 70 7	Package Type TO-205AD TO-205AF TO-220 DO-4 DO-5 DO-7 DO-8 DO-9 DO-13 DO-14 DO-29 DO-35 DO-41 DO-29 DO-35 DO-41 DO-29 DO-35 DO-41 DO-29 DO-35 DO-41 DO-29 DO-35 DO-14 DO-29 DO-35 DO-41 DO-205AB PA-42A,B PD-306C PD-50 PD-77 PD-180 PD-319 PD-262 PD-975 PD-280 PD-216 PT-2G PT-6B PH-13 PH-16 PH-56 PY-58	θ _J C (°C/W) 70 70 5 5 5 10 5 5 10 5 10 5 70 5 70 5 70 70 70 70 70 70 70 70 70 70

*When available, estimates must be based on military specification sheet or vendor values, whichever θ_{JC} is higher.

6.15 DISCRETE SEMICONDUCTORS, EXAMPLE

Example

Given: Silicon dual transistor (complementary), JAN grade, rated for 0.25 W at 25°C, one side only, and 0.35 W at 25°C, both sides, with T_{max} = 200°C, operating in linear service at 55°C case temperature in a sheltered naval environment. Side one, NPN, operating at 0.1 W and 50 percent of rated voltage and side two, PNP, operating at 0.05 W and 30 percent of rated voltage. The device operates at less than 200 MHz.

Since the device is a bipolar dual transistor operating at low frequency (<200 MHz), it falls into the Transistor, Low Frequency, Bipolar Group and the appropriate model is given in Section 6.3. Since the device is a dual device, it is necessary to compute the failure rate of each side separately and sum them together. Also, since θ_{JC} is unknown, $\theta_{JC} = 70^{\circ}$ C/W will be assumed.

Based on the given information, the following model factors are determined from the appropriate tables shown in Section 6.3.

$\pi_{T1} = \pi_{T2} = \pi_{A} = \pi_{A}$	2.1	Side 1, T _J = T _C + θ _{JC} P = 55 + 70(.1) = 62°C Side 2, T _J = 55 + 70(.05) = 59°C
^π A =		Side 2, T _J = 55 + 70(.05) = 59°C
	1.5	
.		-
"R =	.68	Using equation shown with π_R table, $P_r = .35$ W
^π S1 ⁼	.21	Side 1, 50% Voltage Stress
^π S2 =	.11	Side 2, 30% Voltage Stress
πQ =	2.4	
^π Ε =	9	
SIDE 1		SIDE 2
ο ^π Τ1 ^π Α	^π R ^π S1 ^π Q ^π E ⁺	$\lambda_{b} \pi_{T2} \pi_{A} \pi_{R} \pi_{S2} \pi_{Q} \pi_{E}$

$$\lambda_{\rm p}$$
 = (.00074)(2.2)(1.5)(.68)(.21)(2.4)(9) + (.00074)(2.1)(1.5)(.68)(.11)(2.4)(9)

= .011 Failures/10⁶ Hours

7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

.

DESCRIPTION

All Types Except Traveling Wave Tubes and Magnetrons. Includes Receivers, CRT, Thyratron, Crossed Field Amplifier, Pulsed Gridded, Transmitting, Vidicons, Twystron, Pulsed Klystron, CW Klystron

 $\lambda_p = \lambda_b \pi_L \pi_E$ Failures/10⁶ Hours

	B	lase Failur	e Rate	e-γρ	
(Includes	Both	Random	and	Wearout	Failures)

Tube Type		n and Wearout Failures) Tube Type	2.
	λ _b	<u> </u>	λ _b
Receiver		Klystron, Low Power,	
Triode, Tetrode, Pentode	5.0	(e.g. Local Oscillator)	30
Power Rectifier	10		
CRT	9.6	Klystron, Continuous Wave*	
Thyratron	50	3K3000LQ	9.0
Crossed Field Amplifier		3K50000LF	54
QK681	260	3K210000LQ	150
SFD261	150	3KM300LA	64
Pulsed Gridded	1	3KM3000LA	19
2041	140	3KM50000PA	110
6952	390	3KM50000PA1	120
7835	140	3KM50000PA2	150
Transmitting	1	4K3CC	610
Triode, Peak Pwr. ≤ 200 KW, Avg.	75	4K3SK	29
Pwr. \leq 2KW, Freq. \leq 200 MHz	, , ,	4K50000LQ	30
Tetrode & Pentode, Peak Pwr.	100	4KM50LB	28
\leq 200 KW, Avg. Power \leq 2KW,	100	4KM50LC	15
\leq 200 KW, Avg. Fower \leq 2KW, Freq. \leq 200 KW		4KM50SJ	38
If any of the above limits exceeded	250	4KM50SK	37
Vidicon	230	4KM3000LR	140
		4KM50000LQ	79
Antimony Trisulfide (Sb ₂ S ₃)		4KM50000LR	57
Photoconductive Material	51	4KM170000LA	15 -
Silicon Diode Array Photoconductive		8824	130
Material	48	8825	120
Twystron		8826	280
VA144	850	VA800E	70
VA145E	450	VA853	220
VA145H	490	VA856B	65
VA913A	230	VA888E	230
Klystron, Pulsed*			
4KMP10000LF	43		
8568	230	* If the CW Klystron of interest is no	ot listed above,
L3035	66	use the Alternate CW Klystron λ_{D} T	able on the
L3250	69	following page.	
L3403	93		
SAC42A	100		
VA842	18		
Z5010A	150		
ZM3038A	190		

7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

					F	(GHz)					
	P(MW)	.2	.4	.6	.8	1.0	2.0	4.0	6.0		
Ì											
	.01	16	16	16	16	16	16	16	16		
	.30	16	16	17	17	17	18	20	21		
	.80	16	17	17	18	18	21	25			
	1.0	17	17	18	18	19	22	_	34		
	3.0	18	20	21	23	25	34	51			
Ì	5.0	19	22	25	28	31	45	75			
	8.0	21	25	30	35	40	63	110			
	10		28	34	40	45	75				
	25	31	45	60	75	90	160				
		L									
I	2		04.00								
	λ ₀ '	= 2,	.94 (r))(P) + 1	6						
-	F	- C	perati	ng Fre	quenc	y in G⊦	łz, 0.2	≤F≤f	5		
	Р,	_ D	Laak O) OWOF	-	01 - 1	0 < 25	and		
	P ≤ 490 F ^{-2.95}										
	•••						D 1				
1	See pi Rates		s page) for ot	her Kr	ystron	Base r	-allure			
1	110103.										

1

Т (уеа	ars)	πլ					
≤ 1		10					
2		2.3					
≥ 3		1.0					
=	$\pi_{L} = 10(T)^{-2.1}, 1 \le T \le 3$ = 10, T \le 1 = 1, T \ge 3 T = Number of Years since Introduction to Field Use						

Learning Factor - π_L

Environment Factor - π_E

Environment	πE						
G _B	.50						
G _F	1.0						
G _M	14						
N _S	8.0						
NU	24						
A _{IC}	5.0						
AIF	8.0						
Auc	6.0						
AUF	12						
A _{RW}	40						
S _F	.20						
M _F	22						
ML	57						
CL	1000						

Alternate* B	ase Failure	Rate for	CW Klystrons	- λ _b
--------------	-------------	----------	--------------	------------------

P(KW)	300	500	800	F 1000	(MHz) 2000	4000	6000	8000	
0.1 1.0 3.0 5.0 8.0 10 30 50 80 100	30 31 32 33 34 35 45 55 70 80	31 32 33 34 35 36 46 56 71 81	33 33 34 35 37 38 48 58 73	34 35 36 38 39 49 59	38 39 40 41 42 43	47 48 49 50	57 57 58	66 66	
λ _b = 0.5P + .00046F + 29									
P = Average Output Power in KW, $0.1 \le P \le 100$ and P $\le 8.0(10)^6 (F)^{-1.7}$									
F = Operating Frequency in MHz, 300 ≤ F ≤ 8000									
*See previous page for other Klystron Base Failure									

Rates.

7.2 TUBES, TRAVELING WAVE

DESCRIPTION Traveling Wave Tubes

$\lambda_p = \lambda_b \pi_E$ Failures/10⁶ Hours

Base	Failure	Rate	- λ _h
------	---------	------	------------------

						0					
		Frequency (GHz)									
Power (W)	.1	1	2	4	6	8	10	14	18		
100	11	12	13	16	20	24	29	42	61		
500	11	12	13	16	20	24	29	42	62		
1000	11	12	14	16	20	24	29	43	62		
3000	12	13	14	17	21	25	30	44	65		
5000	12	13	15	18	22	26	32	46	68		
8000	13	14	16	19	23	28	33	49	72		
10000	14	15	16	20	24	29	35	51	75		
15000	15	16	18	22	26	32	39	56	83		
20000	17	18	20	24	29	35	43	62	91		
30000	20	22	24	29	36	43	52	76	110		
40000	25	27	30	36	43	53	64	93	140		

 $\lambda_{b} = 11(1.00002)^{P}(1.1)^{F}$

P = Rated Power in Watts (Peak, if Pulsed), .001 $\leq P \leq 40,000$

F = Operating Frequency in GHz, $.3 \le F \le 18$.

If the operating frequency is a band, or two different values, use the geometric mean of the end point frequencies when using table.

Environment Factor - π _E					
Environment	π _E				
G _B	1.0				
G _F	3.0				
G _M	14				
NS	6.0				
^N S Nປ	21				
A _{IC}	10				
AIF	14				
AUC AUF	11				
AUF	18				
ARW	40				
S _F	.10				
MF	22				
ML	66				
M _F M _L C _L	1000				

7.3 TUBES, MAGNETRON

DESCRIPTION

Magnetrons, Pulsed and Continuous Wave (CW)

$\lambda_p = \lambda_b \pi_U \pi_C \pi_E$ Failures/10⁶ Hours

				Frequency (GHz)										
P(MW)	.1	.5	1	5	10	20	30	40	50	60	70	80	90	100
.01	1.4	4.6	7.6	24	41	67	91	110	130	150	170	190	200	220
.05	1.9	6.3	10	34	56	93	120	150	180	210	230	260	280	300
.1	2.2	7.2	12	39	64	110	140	180	210	240	270	290	320	350
.3	2.8	9.0	15	48	80	130	180	220	260	300	330	370	400	430
.5	3.1	10	17	54	89	150	200	240	290	330	370	410	440	480
1	3.5	11	19	62	100	170	230	280	330	380	420	470	510	550
3	4.4	14	24	77	130	210	280	350	410	470	530	580	630	680
5	4.9	16	26	85	140	230	310	390	460	520	580	640	700	760
Pulsed	Magne							cv	V Magn	etrons	(Rated	Power	< 5 KW	/):
$\lambda_{b} = 19(F)^{.73} (P)^{.20}$ F = Operating Frequency in GHz. $.1 \le F \le 100$						λ ₀ = 18								
$F = Operating Frequency in GHz, .1 \le F \le 100$														
P =	Output	Power in	MW.		.01 ≤	P<5								

Base Failure Rate - λ_h

Utillization Factor - π_U

Utilization (Radiate Hours/ Filament Hours)	πυ
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	.44 .50 .55 .61 .66 .72 .78 .83 .89
0.9 1.0	.94 1.0
$\pi_{U} = 0.44 + 0.56R$	

R = Radiate Hours/Filament Hours

Construction Factor - π_C

Construction	π _C			
CW (Rated Power < 5 KW) Coaxial Pulsed	1.0 1.0			
Conventional Pulsed	5.4			

Environment Factor - π_E

Environment	π _E	
GB	1.0	
G _F	2.0	
G _M	4.0	
NS	15	
NU	47	
A _{IC}	10	
A _{IF}	16	
AUC	12	
A _{UF}	23	
A _{RW}	80	
S _F	.50	
M _F	43	
ML	133	
ML CL	2000	

8.0 LASERS, INTRODUCTION

The models and failure rates presented in this section apply to <u>laser peculiar items only</u>, i.e., those items wherein the lasing action is generated and controlled. In addition to laser peculiar items, there are other assemblies used with lasers that contain electronic parts and mechanical devices (pumps, valves, hoses, etc.). The failure rates for these parts should be determined with the same procedures as used for other electronic and mechanical devices in the equipment or system of which the laser is a part.

The laser failure rate models have been developed at the "functional," rather than "piece part" level because the available data were not sufficient for "piece part" model development. Nevertheless, the laser functional models are included in this Handbook in the interest of completeness. These laser models will be revised to include piece part models and other laser types when the data become available.

Because each laser family can be designed using a variety of approaches, the failure rate models have been structured on three basic laser functions which are common to most laser families, but may differ in the hardware implementation of a given function. These functions are the lasing media, the laser pumping mechanism (or pump), and the coupling method.

Examples of media-related hardware and reliability influencing factors are the solid state rod, gas, gas pressure, vacuum integrity, gas mix, outgassing, and tube diameter. The electrical discharge, the flashlamp, and energy level are examples of pump-related hardware and reliability influencing factors. The coupling function reliability influencing factors are the "Q" switch, mirrors, windows, crystals, substrates, coatings, and level of dust protection provided.

Some of the laser models require the number of active optical surfaces as an input parameter. An active optical surface is one with which the laser energy (or beam) interacts. Internally reflecting surfaces are not counted. Figure 8-1 below illustrates examples of active optical surfaces and count.



Figure 8-1: Examples of Active Optical Surfaces

8.1 LASERS, HELIUM AND ARGON

DESCRIPTION Helium Neon Lasers Helium Cadmium Lasers Argon Lasers

$\lambda_{p} = \lambda_{MEDIA} \pi_{E} + \lambda_{COUPLING} \pi_{E}$ Failures/10⁶ Hours

Lasing Media Failure Rate - AMEDIA

Туре			
He/Ne	84		
He/Cd	228		
Argon	457		

Environment Factor - π _E		
Environment	π _E	
G _B	.30	
G _F	1.0	
G _F G _M	4.0	
NS	3.0	
NU	4.0	
AIC	4.0	
A _{IF}	6.0	
AUC	7.0	
AUF	9.0	
A _{RW}	5.0	
S _F	.10	
M _F	3.0	
ML	8.0	
CL	N/A	

Coupling Failure Rate - $\lambda_{COUPLING}$

Types	
Helium	0
Argon	6

NOTE: The predominant argon laser failure

mechanism is related to the gas media (as reflected in λ_{MEDIA} ; however, when the tube is refilled periodically (preventive maintenance) the mirrors (as part of $\lambda_{COUPLING}$) can be expected to deteriorate after approximately 10⁴ hours of operation if in contact with the discharge region.

 $\lambda_{COUPLING}$ is negligible for helium lasers.

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

8.2 LASERS, CARBON DIOXIDE, SEALED

DESCRIPTION CO₂ Sealed Continuous Wave Lasers

 $\lambda_p = \lambda_{MEDIA} \pi_O \pi_B \pi_E + 10 \pi_{OS} \pi_E$ Failures/10⁶ Hours

L	_asing	Media	Failure	Rate	- /	MEDIA
---	--------	-------	---------	------	-----	-------

Tube Current (mA)	λ _{MEDIA}	
10 20 30 40 50 100 150	240 930 1620 2310 3000 6450 9900	
λ _{MEDIA} = 69(I) - 450 I = Tube Current (mA), 10 ≤ I ≤ 150		

Gas Overfill Factor = π_{O}

	<u> </u>
CO2 Overfill Percent (%)	π _O
0	1.0
25	.75
50	.50

 $\pi_{O} = 1 - .01$ (% Overfill)

Overfill percent is based on the percent increase over the optimum CO₂ partial pressure which is normally in the range of 1.5 to 3 T_{OTT} (1 T_{OTT} = 1 mm Hg Pressure) for most sealed CO₂ lasers.

Ballast Factor - π _B		
Percent of Ballast Volumetric Increase	π _B	
0 50 100 150 200	1.0 .58 .33 .19 .11	
π _B = (1/3) (% Vol. Inc./100)		

Optical Surface Factor - π_{OS}		
Active Optical Surfaces	πOS	
1	1	

2

 π_{OS} = Number of Active Optical Surfaces

2

NOTE: Only active optical surfaces are counted. An active optical surface is one with which the laser energy or beam interacts. Internally reflecting surfaces are not counted. See Figure 8-1 for examples on determining the number of optical surfaces.

Environment Factor - $\pi_{\rm F}$

E		
Environment	π _E	
GB	.30	
GF	1.0	
GB GF GM	4.0	
NS	3.0	
NU	4.0	
A _{IC}	4.0	
A _{IF}	6.0	
A _{IC} A _{IF} A _{UC}	7.0	
AUF	9.0	
ARW	5.0	
S _F	.10	
MF	3.0	
ML	8.0	
ML CL	N/A	

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

. .

ŧ

8.3 LASERS, CARBON DIOXIDE, FLOWING

DESCRIPTION CO₂ Flowing Lasers

$\lambda_p = \lambda_{COUPLING} \pi_{OS} \pi_E$ Failures/10⁶ Hours

Coupling Failure Rate - A COUPLING

· -	COUPLING
Power (KW)	
.01 .1 1.0	3 30 300

^λCOUPLING = 300P

P = Average Power Output in KW, $.01 \le P \le 1.0$

Beyond the 1KW range other glass failure mechanisms

begin to predominate and alter the $\lambda_{COUPLING}$ values. It should also be noted that CO_2 flowing laser optical devices are the primary source of failure occurrence. A tailored optical cleaning preventive maintenance program on optic devices greatly extends laser life.

Optical Surface Factor - nos

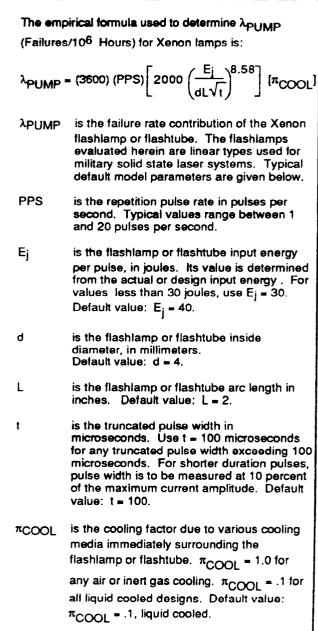
Active Optical Surfaces	^π OS
1	1
2	2

 π_{OS} = Number of Active Optical Surfaces

NOTE: Only active optical surfaces are counted. An active optical surface is one with which the laser energy or beam interacts. Internally reflecting surfaces are not counted. See Figure 8-1 for examples on determining the number of optical surfaces.

Environment Factor - π_E		
Environment	π _E	
G _B	.30	
G _F	1.0	
G _M	4.0	
NS	3.0	
NU	4.0	
A _{IC}	4.0	
A _{IF}	6.0	
AUC	7.0	
A _{UF}	9.0	
A _{RW}	5.0	
S _F	.10	
M _F	3.0	
ML CL	8.0	
CL	N/A	

Environment Easter - m


8.4 LASERS, SOLID STATE, ND:YAG AND RUBY ROD

DESCRIPTION

Ruby Rod Lasers

 $\lambda_p = (\lambda_{PUMP} + \lambda_{MEDIA} + 16.3 \pi_C \pi_{OS}) \pi_E$ Failures/10⁶ Hours

Pump Pulse Failure Rate - λ_{PUMP} (Xenon Flashlamps)

Pump Pulse Failure Rate - λ_{PUMP}3 (Krypton Flashlamps)

The empir	ical formula used to determine λ _{PUMP} for	
Krypton lamp is:		
λ _{PUMP} = [6	$[10^{(0.9 \frac{P}{L})}][\pi_{COOL}] \text{ Failures/10}^6 \text{ Hours}$	
λ _{PUMP}	is the failure rate contribution of the krypton	
	flashlamp or flashtube. The flashlamps evaluted herein are the continuous wave (CW) type and are most widely used for commercial solid state applications. They are approx-imately 7mm in diameter and 5 to 6 inches long.	
Ρ	is the average input power in kilowatts. Default value: P = 4.	
L	is the flashlamp or flashtube arc length in inches. Default value: $L = 2$.	
[#] COOL	is the cooling factor due to various cooling media immediately surrounding the flashlamp or flashtube. $\pi_{COOL} = 1$ for any air or inert gas cooling. $\pi_{COOL} = .1$ for all liquid designs. Default value: $\pi_{COOL} = .1$, liquid	

Media Failure Rate - λ _{MEDIA}		
Laser Type	^λ ΜΕDIA	
ND:YAG	0	
Ruby	(3600) (PPS) [43.5 F ^{2.52}]	
PPS is the number of pulses per second		
F is the energy density in Joules per cm. ² /pulse over the cross-sectional area of the laser beam, which is nominally equivalent to the cross-sectional area of the laser rod, and its value is determined from the actual design parameter of the laser rod utilized.		
NOTE: ^{\A} MEDIA ^{is negligi}	ible for ND:YAG lasers.	

cooled.

8-5

Neodymium-Yttrium-Aluminum-Garnet (ND:YAG) Rod Lasers

8.4 LASERS, SOLID STATE, ND:YAG AND RUBY ROD

Coupling Cleanliness Factor - π_C

Cleanliness Level	۳c
Rigorous cleanliness procedures and trained maintenance personnel. Bellows provided over optical train.	1
Minimal precautions during opening, maintenance, repair, and testing. Bellows provided over optical train.	30
Minimal precautions during opening, maintenance, repair, and testing. No bellows provided over optical train.	60
NOTE: Although sealed systems tend to be reliable once compatible materials have been selected and proven, extreme care must still be taken to prevent the entrance of particulates during manufacturing, field flashlamp replacement, or routine maintenance/ repair. Contamination is the major cause of solid state laser malfunction, and special provisions and vigilance must continually be provided to maintain the cleanliness level required.	

Environment Factor - π_E Environment π_E GB .30 GF 1.0 GM 4.0 3.0 NS 4.0 NU 4.0 AIC AIF 6.0 7.0 AUC 9.0 AUF ARW 5.0 SF .10 3.0 MF 8.0 ML CI N/A

Optical Surface Factor - π_{OS}

Active Optical Surfaces	π _{OS}
1	1
2	2
^π OS = Number of Active O	ptical Surfaces

NOTE: Only active optical surfaces are counted. An active optical surface is one with which the laser energy or beam interacts. Internally reflecting surfaces are not counted. See Figure 8-1 for examples on determining the number of optical surfaces.

·* 1

а.

I

I.

9.0 RESISTORS, INTRODUCTION

This section includes the active resistor specifications and, in addition, some older/inactive specifications are included because of the large number of equipments still in field use which contain these parts.

The Established Reliability (ER) resistor family generally has four qualification failure rate levels when tested per the requirements of the applicable specification. These qualification failure rate levels differ by a factor of ten (from one level to the next). However, field data has shown that these failure rate levels differ by a factor of about only three, hence the π_{O} values have been set accordingly.

The use of the resistor models requires the calculation of the electrical power stress ratio, Stress = operating power/rated power, or per Section 9.16 for variable resistors. The models have been structured such that derating curves do not have to be used to find the base failure rate. The rated power for the stress ratio is equal to the full nominal rated power of the resistor. For example, a MIL-R-39008 resistor has the following derating curve:

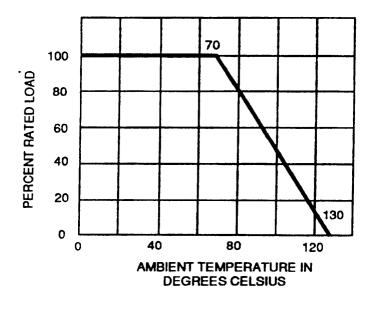


Figure 9-1: MIL-R-39008 Derating Curve

This particular resistor has a rating of 1 watt at 70°C ambient, or below. If it were being used in an ambient temperature of 100°C, the rated power for the stress calculation would still be 1 watt, <u>not</u> 45% of 1 watt (as read off the curve for 100°C). Of course, while the derating curve is not needed to determine the base failure rate, it must still be observed as the maximum operating condition. To aid in determining if a resistor is being used within rated conditions, the base failure rate tables show entries up to certain combinations of stress and temperature. If a given operating stress and temperature point falls in the blank portion of the base failure rate table, the resistor is overstressed. Such misapplication would require an analysis of the circuit and operating conditions to bring the resistor within rated conditions.

9.1 RESISTORS, FIXED, COMPOSITION

1

SPECIFICATION	STYLE	DESCRIPTION
MIL-R-39008	RCR	Resistors, Fixed, Composition (Insulated), Established Reliability
MIL-R-11	RC	Resistors, Fixed, Composition (Insulated)

$$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm B} \pi_{\rm O} \pi_{\rm E}$$
 Failures/10⁶ Hours

Base	Failure	Rate	-	λ
				-

			Stress		
T _A (℃)	.1	.3	.5	.7	.9
0 10 20 30 40 50 60 70 80 90 100 110 120	.00007 .00011 .00015 .00022 .00031 .00063 .00090 .0013 .0018 .0026 .0038 .0054	.00010 .00015 .00022 .00031 .00045 .00066 .00095 .0014 .0020 .0029 .0041 .0060	.00015 .00021 .00031 .00046 .00067 .00098 .0014 .0021 .0031 .0045 .0065	.00020 .00030 .00045 .00066 .00098 .0014 .0021 .0032 .0047	.00028 .00043 .00064 .0096 .0014 .0021 .0032 .0048
λ _b = 4.5	x 10 ⁻⁹ exp	$b\left(12\left(\frac{T+2}{34}\right)\right)$	2 <u>73</u>))ex	$P\left(\frac{S}{.6}\left(\frac{T_{+}}{2}\right)\right)$	<u>273</u>))
Т	= Ambie	nt Tempera	ature (°C)		
S	= Ratio d	of Operatin	ig Power t	o Rated F	Power

Resistance Facto	r - π _R
Resistance Range (ohms)	π _R
< .1 M	1.0
> .1 M to 1 M	1.1
> 1.0 M to 10 M	1.6

Quality Factor - π_Q		
πQ		
.03		
0.1		
0.3		
1.0		
5.0		
15		

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	3.0
G _M	8.0
NS	5.0
NU	13
AIC	4.0
A _{IF}	5.0
A _{IC} A _{IF} A _{UC}	7.0
AUF	11
ARW	19
S _F	.50
M _F	11
ML	27
ML CL	490

2.5

> 10 M

9.2 RESISTORS, FIXED, FILM

SPECIFICATION
MIL-R-39017
MIL-R-22684
MIL-R-55182
MIL-R-10509

STYLE RLR RL RN (R, C, or N) RN

DESCRIPTION

Fixed, Film, Insulated, Established Reliability Fixed, Film, Insulated Fixed, Film, Established Reliability Fixed, Film, High Stability

 $\lambda_p = \lambda_b \pi_R \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ _D (MIL-R-22684 and MIL-R-39017)						_	
T _A (℃)	Stress T _A (℃) .1 .3 .5 .7 .9						
0	.00059	.00073	.00089	.0011	.0013		
10	.00063	.00078	.00096	.0012	.0014		
20	.00067	.00084	.0010	.0013	.0016		
30	.00072	.00090	.0011	.0014	.0018		
40	.00078	.00098	.0012	.0016	.0019		
50	.00084	.0011	.0014	.0017	.0022		
60	.00092	.0012	.0015	.0019	.0024		
70	.0010	.0013	.0017	.0021	.0027		
80	.0011	.0014	.0018	.0024			
90	.0012	.0016	.0021	.0027			
100	.0013	.0018	.0023				
110	.0015	.0020	.0026				
120	.0017	.0023					
130	.0019						
140 .0022							
$\lambda_{b} = 3.25 \times 10^{-4} \exp\left(\frac{T+273}{343}\right)^{3} \exp\left(S\left(\frac{T+273}{273}\right)\right)$							
Τ =	Ambient ⁻	Temperatu	re (°C)				
S = Ratio of Operating Power to Rated Power							

Base	Failure	Rate -	γP
	500		

(MIL-R-10509 and MIL-R-55182)					
T _A (℃)	.1	.3	ress .5	.7	.9
0	.00061	.00074	.00091	.0011	.0014
10	.00067	.00082	.0010	.0012	.0015
20	.00073	.00091	.0011	.0014	.0017
30	.00080	.0010	.0013	.0016	.0019
40	.00088	.0011	.0014	.0017	.0022
50	.00096	.0012	.0015	.0020	.0025
60	.0011	.0013	.0017	.0022	.0028
70	.0012	.0015	.0019	.0025	.0032
80	.0013	.0016	.0021	.0028	.0036
90	.0014	.0018	.0024	.0031	.0040
100	.0015	.0020	.0026	.0035	.0045
110	.0017	.0022	.0029	۔ ودەن.	.0051
120	.0018	.0024	.0033	.0043	.0058
130	.0020	.0027	.0036	.0049	.0065
140	.0022	.0030	.0040	.0054	
150	.0024	.0033	.0045		
160	.0026	.0036			
170	.0029				
$\lambda_{b} = 5 \times 10^{-5} \exp\left(3.5 \left(\frac{T+273}{398}\right)\right) \exp\left(S \left(\frac{T+273}{273}\right)\right)$					
T = Ambient Temperature (°C)					
S =	S = Ratio of Operating Power to Rated Power				
NOTE: Do not use MIL-R-10509 (Characteristic B) below the line. Points below are overstressed.					

9.2 RESISTORS, FIXED, FILM

Resistance Factor - π_R

Resistance Range (ohms)	π _R
< .1M	1.0
≥ 0.1 M to 1 M	1.1
> 1.0 M to 10 M	1.6
> 10 M	2.5

Quality	Factor	- π _O
---------	--------	------------------

Quality	^π Q
S	.03
R	0.1
Р	0.3
м	1.0
MIL-R-10509	5.0
MIL-R-22684	5.0
Lower	15

Environment Factor - π _E			
Environment	π _E		
G _B	1.0		
G _F	2.0		
G _F G _M NS	8.0		
NS	4.0		
NU	14		
A _{IC}	4.0		
A _{IF}	8.0		
AUC	10		
AUF	18		
A _{RW}	19		
S _F	.20		
M _F	10		
ML	28		
Mլ Շլ	510		

RESISTORS, FIXED, FILM, POWER 9.3

SPECIFICATION MIL-R-11804

STYLE RD

DESCRIPTION Fixed, Film, Power Type

$\lambda_p = \lambda_b \pi_R \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ _b								
T _A (℃)	.1	Stress .1 .3 .5 .7 .9						
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210	.0089 .0090 .0092 .0094 .0096 .0098 .010 .010 .011 .011 .011 .011 .012 .012	.0098 .010 .010 .011 .011 .011 .012 .012 .012	.011 .011 .012 .012 .013 .013 .014 .014 .014 .015 .016 .016 .017	.013 .014 .014 .015 .015 .016 .016	.015 .015 .016 .017 .017			
λ _b -	$\lambda_{\rm b} = 7.33 \times 10^{-3} \exp\left(.202\left(\frac{T+273}{298}\right)^{2.6}\right) \times$							
$\exp\left(\left(\frac{S}{1.45}\right)\left(\frac{T+273}{273}\right)^{.89}\right)^{1.3}$								
т.	T = Ambient Temperature (°C)							
S .	S = Ratio of Operating Power to Rated Power							

Quality Factor - π_Q			
Quality	πQ		
MIL-SPEC	1.0		
Lower	3.0		

Environment Factor - π E			
Environment ^π E			
G _B	1.0		
	2.0		
G _F G _M NS NU	10		
NS	5.0		
NU	17		
AIC	6.0		
A _{IF}	8.0		
AUC	14		
AUF	18		
A _{IF} A _{UC} A _{UF} A _{RW}	25		
S _F	.50		
M _F	14		
ML CL	36		
сL	660		

Resistance Factor - $\pi_{\rm P}$

	11
Resistance Range (ohms)	^π R
10 to 100	1.0
> 100 to 100K	1.2
> 100K to 1M	1.3
> 1M	3.5

9.4 RESISTORS, NETWORK, FIXED, FILM

SPECIFICATION MIL-R-83401

STYLE RZ

DESCRIPTION Resistor Networks, Fixed, Film

$$\lambda_p = .00006 \pi_T \pi_{NR} \pi_Q \pi_E$$
 Failures/10⁶ Hours

Temperature Factor - π_T				
⊺ _C (℃)	π _T	T _C (℃)	πŢ	
25 30 35 40 45 50 55 60 65 70 75	1.0 1.3 1.6 1.9 2.4 2.9 3.5 4.2 5.0 6.0 7.1	80 85 90 95 100 105 110 115 120 125	8.3 9.8 11 13 15 18 21 24 27 31	
$\pi_{\rm T} = \exp\left(-4056\left(\frac{1}{{\rm T}_{\rm C}+273}-\frac{1}{298}\right)\right)$				

T = exp (- 4056
$$\left(\frac{1}{T_{C} + 273} - \frac{1}{298}\right)$$

NOTE: If T_C is unknown, it can be estimated as follows:

 $T_{C} = T_{A} + 55 (S)$

 $T_A =$ Ambient Temperature (°C)

Operating Power Package Rated Power S

Any device operating at $T_C > 125$ °C is overstressed.

Number of Resistors Factor - π_{NR}

 π_{NR} = Number of Film Resistors in Use

NOTE: Do not include resistors that are not used.

Quality Factor - π_Q Quality πQ **MIL-SPEC** 1 Lower 3

Environment Factor - TE Environment πE 1.0 GB GF 2.0 8.0 GM 4.0 NS 14 NU 4.0 AIC 8.0 AIF 9.0 AUC AUF 18 19 ARW S_F .50 MF 14 ML 28 C 510

9-6

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

9.5 RESISTORS, FIXED, WIREWOUND

SPECIFICATION MIL-R-39005 MIL-R-93

STYLE RBR RB

DESCRIPTION Fixed, Wirewound, Accurate, Established Reliability Fixed, Wirewound, Accurate

$\lambda_p = \lambda_b \pi_R \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ _b									
		Stress							
T _A (℃)	.1	.3	.5	.7	.9				
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	.0033 .0034 .0034 .0035 .0037 .0038 .0041 .0044 .0048 .0048 .0055 .0055 .0079 .010 .014	.0037 .0038 .0039 .0040 .0042 .0043 .0043 .0049 .0053 .0059 .0068 .0080 .0099 .013	.0045 .0047 .0048 .0050 .0052 .0055 .0059 .0064 .0070 .0079 .0092 .011 .014 .018	.0057 .0059 .0062 .0066 .0070 .0075 .0081 .0089 .0099 .011 .013 .016 .021 .028	.0075 .0079 .0084 .0090 .0097 .011 .012 .013 .015 .017 .020 .025 .033				
$\lambda_{b} = .0031 \exp\left(\frac{T+273}{398}\right)^{10} \exp\left(S\left(\frac{T+273}{273}\right)\right)^{1.5}$									
Т	Ambie	ent Temper	ature (°C)						
S	- Ratio	of Operatir	ng Power	to Rated I	Power				

Resistance Factor - π_R

Resistance Range (ohms)	π _R
Up to 10K	1.0
> 10K to 100K	1.7
> 100K to 1M	3.0
> 1M	5.0

Quality Factor - π_{Q}					
Quality	πQ				
S	.030				
R	.10				
Р	.30				
Μ	1.0				
MIL-R-93	5.0				
Lower	15				

Environment Factor - π_E

	E
Environment	π _E
GB	1.0
G _F	2.0
G _M	11
NS	5.0
NU	18
	15
A _{IF}	18
A _{IC} A _{IF} A _{UC} A _{UF} A _{RW}	28
AUF	35
ARW	27
S _F	.80
S _F M _F	14
	38
ML CL	610

9.6 RESISTORS, FIXED, WIREWOUND, POWER

SPECIFICATION MIL-R-39007 MIL-R-26 STYLE RWR RW DESCRIPTION

Fixed, Wirewound, Power Type, Established Reliability Fixed, Wirewound, Power Type

$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm R} \pi_{\rm Q} \pi_{\rm E}$ Failures/10⁶ Hours

Base Failure Rate - λ _b							
T _A (°C)	.1	.3	Stress . 5	.7	.9		
0 10 20 30 40	.0042 .0045 .0048 .0052 .0056	.0062 .0068 .0074 .0081 .0089	.0093 .010 .011 .013 .014	.014 .016 .017 .020 .022	.021 .024 .027 .031 .035		
50 60 70 80 90 100	.0061 .0066 .0072 .0078 .0085 .0093	.0097 .011 .012 .013 .014 .016	.016 .017 .020 .022 .025 .028	.025 .028 .032 .037 .042 .048	.040		
110 120 130 140 150	.010 .011 .012 .014 .015	.018 .020 .022 .025 .028	.031 .036 .040 .046 .052	.055 .063	J		
160 170 180 190 200	.017 .019 .021 .023 .026	.032 .036 .040 .046 .052	.060 .068 .078	4			
210 220 230 240 250	.029 .033 .037 .042 .047	.059 .068 .077 .088 .10					
260 270 280 290 300 310	.054 .061 .06 .079 .091 .10						
$\lambda_{b} = .00148 \exp\left(\frac{T+273}{298}\right)^{2} \exp\left(\left(\frac{S}{.5}\right) \left(\frac{T+273}{273}\right)\right)$							
т -	Ambien	t Tempera	ture (°C)				
S =	Ratio of	Operating	Power to	Rated Po	wer		
	: Do not u Points belo			stors bek	ow the		

	Resistance Factor - π _R (MIL-R-39007)									
	I		Re	sistand	>e Ran	ge (of	ims)			
MIL-R- 39009 Style	Up 10500	>500 to 1K	>1K 10 5K	>5K 10 7.5K	>7.5 K1o 10K	>10K 10 15K	>15K 10 20K	>20K		
RW R 71	1.0	1.0	1.2	1.2	1.6	1.6	1.6	NA		
RWR 74	1.0	1.0	1.0	1.2	1.6	1.6	NA	NA		
RWR 78	1.0	1.0	1.0	1.0	1.2	1.2	1.2	1.6		
RWR 80	1.0	1.2	1.6	1.6	NA	NA	NA	NA		
RW R 81	1.0	1.6	NA	NA	NA	NA	NA	NA		
RWR 82	1.0	1. 6	1. 6	NA	NA	NA	NA	NA		
RWR 84	1.0	1.0	1.1	1.2	1.2	1.6	NA	NA		
RWR 89	1.0	1.0	1.4	NA	NA	NA	NA	NA		

Quality Factor - π_Q						
π _Q						
.03						
.10						
.30						
1.0						
5.0						
15						

9-8

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

9.6 RESISTORS, FIXED, WIREWOUND, POWER

Resistance Factor - π_R

(MIL-R-26)								
		Resistance Range (ohms)						
MIL-R-26 Style	Up 100	>100 to 1K	⇒1K to 10K	>10K to 100K	>100K to 150K	>150K to 200K		
RW 10 RW 11 RW 12 RW 13 RW 14 RW 15 RW 15 RW 15 RW 20 RW 21 RW 20 RW 21 RW 20 RW 21 RW 20 RW 23 RW 23 RW 24 RW 29 RW 30 RW 31 RW 32 RW 33 RW 34 RW 32 RW 33 RW 34 RW 35 RW 35 RW 36 RW 37 RW 36 RW 37 RW 55 RW 69 RW 67 RW 68 RW 70 RW 78 RW 78	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.2 1.0 1.0 1.2 1.0 1.0 1.2 1.0 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.2.6.0.0.2.8.8.0.6.4.2.8.8.8.8.4.4.4.5.6.4.4.4.6.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8	1.1. 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	1.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

Environment Factor - π _E					
Environment	^π E				
G _B	1.0				
G _F	2.0				
G _M	10				
G _B G _F M _S N _U	5.0				
NU	16				
A _{IC} A _{IF} AUC A _{UF}	4.0				
A _{IF}	8.0				
AUC	9.0				
AUF	18				
A _{RW}	23				
Š _F	.30				
M _F	13				
м _L	34				
м _L С _L	610				

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

FIXED, WIREWOUND, POWER, CHASSIS MOUNTED RESISTORS, 9.7

SPECIFICATION	STYLE
MIL-R-39009	RER
MIL-R-18546	RE

DESCRIPTION Fixed, Wirewound, Power Type, Chassis Mounted, **Established Reliability** Fixed, Wirewound, Power Type, Chassis Mounted

 $\lambda_p = \lambda_b \pi_B \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ _b								
T _A (℃)	.1	.3	ess .5	.7	.9			
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250	.0021 .0023 .0025 .0028 .0031 .0034 .0037 .0041 .0045 .0055 .0060 .0055 .0060 .0055 .0060 .0055 .0060 .0073 .0081 .0089 .0098 .011 .012 .013 .014 .016 .017 .019 .021 .023	.0032 .0036 .0040 .0045 .0050 .0056 .0063 .0079 .0088 .0098 .011 .012 .014 .015 .017 .019 .022 .024 .027 .030	.0049 .0056 .0064 .0072 .0082 .0093 .011 .012 .014 .016 .020 .023 .026 .030 .034	.0076 .0087 .0100 .012 .013 .016 .018 .021 .024 .028 .032	.012 .014 .016 .019 .022 .026			
$\lambda_{b} = .00015 \exp\left(2.64\left(\frac{T+273}{298}\right)\right) \exp\left(\frac{S}{.466}\left(\frac{T+273}{273}\right)\right)$								
т	= Ambier	nt Tempera	iture (°C)					
S	S = Ratio of Operating Power to Rated Power							

Resistance Factor - R (Characteristic G (Inductive Winding) of MIL-R-18546 and

	nauctiv	ery wo	und Sty				
					lange (d		
Style	Rated Power (W)	Up to 500	>500 10 1K	>1K to 5K	»5К ю 10К	>10K to 20K	20K
RE 60 RER60	5	1.0	1.2	1.2	1.6	NA	NA
RE 65 RER65	10	1.0	1.0	1.2	1.6	NA	NA
RE 70 RER70	20	1.0	1.0	1.2	1.2	1.6	NA
RE 75 RER75	30	1.0	1.0	1.0	1.1	1.2	1.6
RE 77	75	1.0	1.0	1.0	1.0	1.2	1.6
RE 80	120	1.0	1.0	1.0	1.0	1.2	1.6

Resistance Factor - nR

(Characteristic N (Noninductive Winding) of MIL-R-18546
and Noninductively Wound Styles of MIL-R-39009)

			Resistance Range (ohms)				
Style	Rated Power (W)	Up to 500	>500 to 1K	>1K to 5K	5 12 K	>10K to 20K	20K
RE 60 RER40	5	1.0	1.2	1.6	NA	NA	NA
RE 65 RER45	10	1.0	1.2	1.6	NA	NA	NA
RE 70 RER50	20	1.0	1.0	1.2	1.6	NA	NA
RE 75 RER55	30	1.0	1.0	1.1	1.2	1.4	NA
RE 77	75	1.0	1.0	1.0	1.2	1.6	NA
RE 80	120	1.0	1.0	1.0	1.1	1.4	NA

.

Quality Factor - π_Q				
Quality	πQ			
S	.030			
R	.10			
P	.30			
м	1.0			
MIL-R-18546	5.0			
Lower	15			

9.7 RESISTORS, FIXED, WIREWOUND, POWER, CHASSIS MOUNTED

Environment Factor - π_E				
Environment	π _E			
G _B	1.0			
G _F	2.0			
G _B G _F G _M N _S	10			
NS	5.0			
N _ป	16			
AIC	4.0			
AIF	8.0			
AUC	9.0			
A _{UC} A _{UF}	18			
ARW	23			
S _F	.50			
M _F	13			
ML	34			
CL	610			

RESISTORS, THERMISTOR 9.8

SPECIFICATION MIL-T-23648

STYLE RTH

DESCRIPTION

Thermally Sensitive Resistor, Insulated, Bead, Disk and Rod Types

$$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm O} \pi_{\rm F}$$
 Failures/10⁶ Hours

Base Failure Bate - λ

Environment	Factor -	π_{F}
-------------	----------	-----------

Base Failure Hate - Ab				
Туре	λ _b			
Bead (Styles 24, 26, 28, 30, 32, 34, 36, 38, 40)	.021			
Disk (Styles 6, 8, 10)	.065			
Rod (Styles 12, 14, 16, 18, 20, 22, 42)	.105			

Quality Factor - π_Q				
Quality	πQ			
MIL-SPEC	1			
Lower	15			

Environment Factor - π _E				
Environment	π _E			
G _B	1.0			
G _F	5.0			
G _M	21			
NS	11			
NU	24			
A _{IC} A _{IF}	11			
AIF	30			
AUC	16			
A _{UC} A _{UF}	42			
A _{RW}	37			
S _F	.50			
M _F	20			
ML	53			
ML CL	950			

9.9 RESISTORS, VARIABLE, WIREWOUND

SPECIFICATION	STYLE
MIL-R-39015	RTR
MIL-R-27208	RT

DESCRIPTION Variable, Wirewound, Lead Screw Actuated, Established Reliability Variable, Wirewound, Lead Screw Actuated

 $\lambda_p = \lambda_b \pi_{TAPS} \pi_R \pi_V \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ _b						
T _A (℃)	.1	.3	Str ess .5	.7	.9	
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	.0089 .0094 .010 .011 .012 .013 .014 .016 .018 .021 .024 .029 .035 .044 .056	.011 .012 .013 .015 .016 .018 .020 .023 .027 .032 .038 .047 .059	.013 .014 .015 .017 .018 .020 .023 .026 .03 .035 .042 .051	.016 .017 .019 .021 .023 .026 .029 .033 .039 .046 .055	.020 .021 .024 .026 .029 .033 .037 .043 .050 .060	
$\lambda_{b} = .0062 \exp\left(\frac{T+273}{358}\right)^{5} \exp\left(S\left(\frac{T+273}{273}\right)\right)$						
т	= Ambie	ent Tempe	rature (°C))		
S = Ratio of Operating Power to Rated Power. See Section 9.16 for Calculation of S.						

Resistance Factor - $\pi_{\rm P}$

Resistance Range (ohms)	π _R
10 to 2K	1.0
>2K to 5K	1.4
>5K to 20K	2.0

Potentiometer Taps Factor - TAPS

	IAPS					
N TAPS	* TAPS	N TAPS	TAPS	N TAPS	TAPS	
3 4 5 6 7 8 9 10 11 12	1.0 1.1 1.2 1.4 1.5 1.7 1.9 2.1 2.3 2.5	13 14 15 16 17 18 19 20 21 22	2.7 2.9 3.1 3.4 3.6 3.8 4.1 4.4 4.6 4.9	23 24 25 26 27 28 29 30 31 32	5.2 5.5 5.8 6.1 6.4 6.7 7.0 7.4 7.7 8.0	
$\pi_{\text{TAPS}} = \frac{\left(N_{\text{TAPS}}\right)^{\frac{3}{2}}}{25} + 0.792$ $N_{\text{TAPS}} = Number of Potentiometer Taps, including the Wiper and Terminations.}$						

		π _V	
).2).6).7).8).9		1.10 1.05 1.00 1.10 1.22 1.40 2.00	
5	$\sqrt{RP}_{Applied}$		
-	Nominal Total Potentiometer Resistance		
=	Power Dissipation		
*	40 Volts for RT 26 and 27		
-	90 Volts for RTR 12, 2 and 22	22 and 24; RT 12	
).2).6).7).8).9	Voltage Voltag	

Voltage Factor - π_{V}

9-13

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

9.9 RESISTORS, VARIABLE, WIREWOUND

Quality Factor - π_Q		
Quality	πQ	
S	.020	
R	.060	
Р	.20	
м	.60	
MIL-R-27208	3.0	
Lower	10	

Environment Factor - π _E		
Environment	π _E	
GB	1.0	
G _F	2.0	
G _B G _F G _M	12	
NS	6.0	
NU	20	
	5.0	
A _{IF}	8.0	
A _{IC} A _{IF} A _{UC}	9.0	
A _{UF}	15	
A _{RW}	33	
S _F	.50	
M _F	18	
ML	48	
м _L С _L	870	

9-14

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

ı

=

DESCRIPTION

9.10 RESISTORS, VARIABLE, WIREWOUND, PRECISION

SPECIFICATION MIL-R-12934 STYLE RR DESCRIPTION Variable, Wirewound, Precision

 $\lambda_{p} = \lambda_{b} \pi_{TAPS} \pi_{C} \pi_{R} \pi_{V} \pi_{Q} \pi_{E}$ Failures/10⁶ Hours

Base Failure Rate - λ _b					
T _A (℃)	.1	.3	Stress .5	.7	.9
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	.10 .11 .12 .13 .14 .15 .17 .19 .21 .24 .28 .33 .40 .49 .60	.11 .12 .13 .14 .15 .17 .19 .22 .25 .30 .35 .42 .52 .65	.12 13 .14 .16 .17 .20 .22 .26 .30 .36 .44 .54	.13 .14 .16 .17 .20 .22 .26 .30 .36 .44 .54	.14 .15 .17 .22 .26 .30 .36 .43 .54
$\lambda_{b} = .0735 \exp\left(1.03 \left(\frac{T+273}{358}\right)^{4.45}\right) x$					

 $\exp\left(\left(\frac{S}{2.74}\right)\left(\frac{T+273}{273}\right)^{3.51}\right)$

T = Ambient Temperature (°C)

S

Ratio of Operating Power to Rated Power.
 See Section 9.16 for Calcuating S.

Construction Class Factor - π_{C}

Construction Class	^π C
RR0900A2A9J103*	2.0
3	1.0
4	3.0
5	1.5

construction class can be found. In this example the construction class is 2. Construction class should always appear in the eighth position.

Resistance Factor	-	π,
-------------------	---	----

Resistance Range (ohms)	π _R	
100 to 10K	1.0	
>10K to 20K	1.1	
>20K to 50K	1.4	
>50K to 100K	2.0	
>100 K to 200K	2.5	
>200K to 500K	3.5	
	1 1	

Potentiometer Taps Factor - π_{TAPS}

	TAFS				
N TAPS	TAPS	N TAPS	TAPS	N TAPS	R TAPS
3 4 5 6 7 8 9 10 11 12	1.0 1.1 1.2 1.4 1.5 1.7 1.9 2.1 2.3 2.5	13 14 15 16 17 18 19 20 21 22	2.7 2.9 3.1 3.4 3.6 3.8 4.1 4.4 4.6 4.9	23 24 25 26 27 28 29 30 31 32	5.2 5.5 5.8 6.1 6.4 6.7 7.0 7.4 7.7 8.0
$\pi_{\text{TAPS}} = \frac{\left(N_{\text{TAPS}}\right)^{\frac{3}{2}}}{25} + 0.792$					
N _{TAPS} - Number of Potentiometer Taps, including the Wiper and Terminations.					

9.10 RESISTORS, VARIABLE, WIREWOUND, PRECISION

Voltage Factor - π_V				
Applied Voltage* Rated Voltage	^π v			
0 to 0.1	1.10			
>0.1 to 0.2	1.05			
>0.2 to 0.6	1.00			
>0.6 to 0.7	1.10			
>0.7 to 0.8	1.22			
>0.8 to 0.9	1.40			
>0.9 to 1.0	2.00			
[•] V _{Applied} = √ ^R P ^P Applied R _P = Nominal Total Potent Resistance	iometer			
P _{Applied} - Power Dissipation				
V = 250 Volts for RR0900), RR1100,			
RR1300, RR2000, RF RR3100, RR3200, RF RR3400, RR3500				
V = 423 Volts for RR3600 Rated	, RR3700			
V = 500 Volts for RR1000 RR2100, RR3800, RF				

^....

^____

Voltage	Factor	-	π.,
•			v

Quality Factor - π_{O}

Quality	πΩ
MIL-SPEC	2.5
Lower	5.0

Environment Factor - π_E		
Environment	πE	
G _B	1.0	
G _B G _F	2.0	
G _M	18	
NS	8.0	
NU	30	
AIC	8.0	
A _{IF} A _{UC} A _{UF}	12	
AUC	13	
AUF	18	
A _{RW}	53	
S _F	.50	
M _F	29	
ML	76	
cL	1400	

9-16

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

-- 1

r

.

9.11 RESISTORS, VARIABLE, WIREWOUND, SEMIPRECISION

SPECIFICATION MIL-R-19	STYLE Ra	DESCRIPTION Variable, Wirewound, Semiprecision (Low Operating Temperature)
MIL-R-39002	RK	Variable, Wirewound, Semiprecision

$$\lambda_{p} = \lambda_{b} \pi_{TAPS} \pi_{R} \pi_{V} \pi_{Q} \pi_{E}$$
 Failures/10⁶ Hours

• •

Base Failure Rate - λ_{b}

T _A (℃)	.1	.3	Stress .5	.7	.9
0	.055	.063	.072	.083	.095
10	.058	.069	.081	.095	.11
20	.063	.076	.092	.11	.13
30	.069	.086	.11	.13	.17
40	.076	.098	.13	.16	.21
50	.085	.11	.15	.20	.27
60	.0 96	.13	.19	.26	.37
70	.11	.16	.24	.35	. 52
80	.13	.20	.31	.48	.75
90	.16	.26	42	.69	1.1
100	.19	.34	.59	1.0	
110	.24	.45	.85		
120	.31				
130	.42				

 $\lambda_{b} = .0398 \exp\left(.514 \left(\frac{T+273}{313}\right)^{5.28}\right) x$ $\exp\left(\frac{S}{1.44} \left(\frac{T+273}{273}\right)^{4.46}\right)$

- Т Ambient Temperature (°C)
- Ratio of Operating Power to Rated Power. s See Section 9.16 for S Calculation.

NOTE: Do not use MIL-R-19 below the line. Points below are overstressed.

Resistance Factor - $\pi_{\rm P}$

	<u> </u>
Resistance Range (ohms)	^π R
10 to 2K	1.0
>2K to 5K	1.4
>5K to 10K	2.0

Potentiometer Taps Factor - π_{TAPS}

N	π	N	π	N	x
N TAPS	TAPS	N TAPS	# TAPS	N TAPS	TAPS
3	1.0	13	2.7	23	5.2
4	1.1	14	2.9	24	5.5
5	1.2	15	3.1	25	5.8
6	1.4	16	3.4	26	6.1
7	1.5	17	3.6	27	6.4
8	1.7	18	3.8	28	6.7
9	1.9	19	4.1	29	7.0
10	2.1	20	4.4	30	7.4
11	2.3	21	4.6	31	7.7
12	2.5	22	4.9	32	8.0
$\pi_{\text{TAPS}} = \frac{\left(N_{\text{TAPS}}\right)^{\frac{3}{2}}}{25} + 0.792$					
$\pi_{\text{TAPS}} = \frac{1}{25} + 0.792$					
^π TAPS = 25 + 0.792 N _{TAPS} = Number of Potentiometer Taps, including the Wiper and Terminations.					

9.11 RESISTORS, VARIABLE, WIREWOUND, SEMIPRECISION

Voltage Factor - T				
		oltage* oltage	π _V	
0 to 0.1	1		1.10	
>0.1 to	0.2	2	1.05	
>0.2 to	0.6	;	1.00	
>0.6 to	0.7	, 1	1.10	
>0.7 to	8.0	,	1.22	
>0.8 to	0.9	1	1.40	
>0.9 to	1.0		2.00	
⁺V Applied	=	$\sqrt{R_{P}P_{Applied}}$		
R _P	-	Nominal Total Potent Resistance	liometer	
PApplied	-	Power Dissipation		
V Rated	=	50 Volts for RA10		
	=	75 Volts for RA20X-X	(C, F	
	=	130 Volts for RA30X-	XC, F	
	-	175 Volts for RA20X-	·XA	
	=	275 Volts for RK09		
	=	320 Volts for RA30X-	·XA	

Voltage Factor - π_V

ctor - π,

Environment Factor - π_{E}

	Έ
Environment	π _E
G _B	1.0
G _F	2.0
G _M	16
NS	7.0
NU	28
A _{IC}	8.0
A _{IF}	12
AUC	N/A
AUF	N/A
A _{RW}	38
S _F	.50
M _F	N/A
М	N/A
CL	N/A

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	2.0
Lower	4.0

9.12 RESISTORS, VARIABLE, WIREWOUND, POWER

SPECIFICATION MIL-R-22 STYLE RP DESCRIPTION Variable, Wirewound, Power Type

$\lambda_{p} = \lambda_{b} \pi_{TAPS} \pi_{R} \pi_{V} \pi_{C} \pi_{Q} \pi_{E}$ Failures/10⁶ Hours

T _A (℃)	.1	.3	Stress .5	.7	.9
0	.064	.074	.084	.097	.11
10	.067	.078	.091	.11	.12
20	.071	.084	.099	.12	.14
30	.076	.091	.11	.13	.16
40	.081	.099	.12	.15	
50	.087	.11	.14	.17	
60	.095	.12	.15		
70	.10	.14	.18		
80	.12	.15			
90	.13	.18			
100	.15				
110	.17				
120	.20				
$\lambda_{b} = .0481 \exp\left(.334 \left(\frac{T+273}{298}\right)^{4.66}\right) x$ $\exp\left(\frac{S}{1.47} \left(\frac{T+273}{273}\right)^{2.83}\right)$					
e	$\frac{1.47}{1.47}$	273)		
Τ -	Ambie	nt Tempei	rature (°C)		
S .	 S = Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation. 				

Base Failure Rate - λ_h

Resistance Factor - $\pi_{\mathbf{R}}$

R					
Resistance Range (ohms)	π _R				
1 to 2K	1.0				
>2K to 5K	1.4				
>5K to 10K	2.0				

Potentiometer Taps Factor - π_{TAPS}

IAPS					
NTAPS	* TAPS	N TAPS	R TAPS	N TAPS	* TAPS
3	1.0	13	2.7	23	5.2
4	1.1	14	2.9	24	5.5
5	1.2	15	3.1	25	5.8
6	1.4	16	3.4	26	6.1
7	1.5	17	3.6	27	6.4
8	1.7	18	3.8	28	6.7
9	1.9	19	4.1	29	7.0
10	2.1	20	4.4	30	7.4
11	2.3	21	4.6	31	7.7
12	2.5	22	4.9	32	8.0
$\pi_{\text{TAPS}} = \frac{\left(N_{\text{TAPS}}\right)^{\frac{3}{2}}}{25} + 0.792$ $N_{\text{TAPS}} = \text{Number of Potentiometer Taps,} \\ \text{including the Wiper and Terminations}$					

RESISTORS, VARIABLE, WIREWOUND, POWER 9.12

Voltage Factor - π_V					
Applied Voltage* Rated Voltage			^π v		
0 to 0.	1		1.10		
>0.1 to	0.2	2	1.05		
>0.2 to	0.6	5	1.00		
>0.6 to	0.7		1.10		
>0.7 to	0.8		1.22		
>0.8 to	>0.8 to 0.9		1.40		
>0.9 to	1.0		2.00		
*V Applied	=	√ ^R P ^P Applied			
Rp	=	Nominal Total Pote Resistance	entiometer		
PApplied = Power Dissipation					
V _{Rated}	V = 250 Volts for RP06				
	=	500 Volts for Othe	rs		

Voltage	Factor	- π	.
---------	--------	-----	----------

Quality Factor - π _Q			
Quality	πQ		
MIL-SPEC	2.0		
Lower	4.0		

Environment Factor - π_E			
Environment	π _E		
G _B	1.0		
G _F	3.0		
G _M	16		
NS	7.0		
NU	28		
A _{IC}	8.0		
AIF	12		
AUC	N/A		
AUF	N/A		
A _{RW}	38		
S _F	.50		
M _F	N/A		
ML	N/A		
ML CL	N/A		

Construction Class Factor - π_{C}

Style	^π C
RP07, RP11, RP16 All Other Styles are Unenclosed	2.0 1.0
	RP07, RP11, RP16 All Other Styles are

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

ı

9.13 RESISTORS, VARIABLE, NONWIREWOUND

SPECIFICATION	STYLE
MIL-R-22097	RJ
MIL-R-39035	RJR

DESCRIPTION

Variable, Nonwirewound (Adjustment Types) Variable, Nonwirewound (Adjustment Types), Established Reliability

 $\lambda_{p} = \lambda_{b} \pi_{TAPS} \pi_{R} \pi_{V} \pi_{Q} \pi_{E}$ Failures/10⁶ Hours

Base Failure Rate - λ _b					
	Stress				
T _A (℃)	.1	.3	.5	.7	.9
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	.021 .022 .023 .024 .025 .026 .028 .030 .034 .038 .043 .050 .060 .074	.023 .023 .024 .025 .026 .028 .030 .032 .035 .039 .044 .051 .060 .073	.024 .025 .026 .028 .029 .031 .033 .036 .040 .045 .052 .060	.026 .027 .029 .030 .032 .035 .038 .042 .046 .053 .061	.028 .030 .031 .033 .036 .039 .043 .047 .053 .061
(/ T+273) 7.3)					
$\lambda_{b} = .019 \exp\left(.445 \left(\frac{T+273}{358}\right)^{7.3}\right) x$					

 $\exp\left(\frac{S}{2.69}\left(\frac{T+273}{273}\right)^{2.46}\right)$

T = Ambient Temperature (°C)

S = Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation. Resistance Factor - $\pi_{\rm p}$

^π R
1.0
1.1
1.2
1.4
1.8

Potentiometer Taps Factor - π_{TAPS}

	TAPS				
N TAPS	*TAPS	N TAPS	# TAPS	N TAPS	* TAPS
3	1.0	13	2.7	23	5.2
4	1.1	14	2.9	24	5.5
5	1.2	15	3.1	25	5.8
6	1.4	16	3.4	26	6.1
7	1.5	17	3.6	27	6.4
8	1.7	18	3.8	28	6.7
9	1.9	19	4.1	29	7.0
10	2.1	20	4.4	30	7.4
11	2.3	21	4.6	31	7.7
12	2.5	22	4.9	32	8.0
$\pi_{\text{TAPS}} = \frac{\left(N_{\text{TAPS}}\right)^{\frac{3}{2}}}{25} + 0.792$ $N_{\text{TAPS}} = Number of Potentiometer Taps, including the Wiper and Terminations.}$					

		oltage*	
Rate	u v	oltage	π _V
0 to 0.	8		1.00
>0.8 to	o 0.9)	1.05
>0.9 to	o 1.0)	1.20
[∙] V _{Applied} R _P P _{Applied} V _{Rated}	-	√RpPApplied Nominal Total Potent Resistance Power Dissipation 200 Volts for RJ and RJ and RJR50 300 Volts for All Othe	RJR26;

RESISTORS, VARIABLE, NONWIREWOUND 9.13

Environment Factor - π _E			
Environment	π _E		
G _B	1.0		
G _F	3.0		
G _B G _F M NS NU	14		
NS	6.0		
NU	24		
A _{IC}	5.0		
A _{IC} A _{IF}	7.0		
AUC	12		
AUF	18		
A _{RW}	39		
S _F	.50		
M _F	22		
ML CL	57		
CL	1000		

Voltage Factor - T

Quality Factor - π_{O}

Quality	πQ
S	.020
R	.060
Р	.20
Μ	.60
MIL-R-22097	3.0
Lower	10

.

9.14 RESISTORS, VARIABLE, COMPOSITION

SPECIFICATION	
MIL-R-94	

STYLE RV DESCRIPTION Variable, Composition, Low Precision

 $\lambda_p = \lambda_b \pi_{TAPS} \pi_R \pi_V \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ _b					
T _A (℃)	.1	.3	Stress .5	.7	.9
0	.027	.030	.032	.035	.038
10	.027	.031	.032	.038	.042
20	.028	.033	.034	.030	.048
30	.020	.036	.041	.048	.056
40	.033	.039	.047	.056	.067
50	.036	.044	.054	.067	.082
60	.039	.050	.065	.083	.11
70	.045	.060	.08	.11	.14
80	.053	.074	.10	.15	
90	.065	.096	.14		
100	.084	.13			
110	.11				
$\lambda_{b} = .0246 \exp\left(.459 \left(\frac{T+273}{343}\right)^{9.3}\right) x$					

$$\exp\left(\frac{S}{2.32}\left(\frac{T+273}{273}\right)^{5.3}\right)$$

- T = Ambient Temperature (°C)
- S = Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation.

Resistance Factor - π_{R}				
Resistance Range (ohms)	π _R			
50 to 50K	1.0			
>50K to 100K	1.1			
>100K to 200K	1.2			
>200K to 500K	1.4			
>500K to 1M	1.8			

Potentiometer Taps Factor - TAPS

N TAPS	# TAPS	N TAPS	* TAPS	N TAPS	π TAPS
TAPS	I IAPS	TAPS	TAPS	TAPS	TAPS
3	1.0	13	2.7	23	5.2
4	1.1	14	2.9	24	5. 5
5	1.2	15	3.1	25	5.8
6	1.4	16	3.4	26	6.1
7	1.5	17	3.6	27	6.4
8	1.7	18	3.8	28	6.7
9	1.9	19	4.1	29	7.0
10	2.1	20	4.4	30	7.4
11	2.3	21	4.6	31	7.7
12	2.5	22	4.9	32	8.0
$\pi_{\text{TAPS}} = \frac{\left(N_{\text{TAPS}}\right)^{\frac{3}{2}}}{25} + 0.792$ $N_{\text{TAPS}} = \text{Number of Potentiometer Taps,}$					
N _{TAPS} = Number of Potentiometer Taps, including the Wiper and Terminations.					

9.14 RESISTORS, VARIABLE, COMPOSITION

1

Voltage Factor - π _V			
	Applied Voltage* Rated Voltage		
0 to 0.	8		1.00
>0.8 to	o 0.9)	1.05
>0.9 to	o 1.0)	1.20
*V Applied	-	$\sqrt{R_{P}P_{Applied}}$	
R _P	-	Nominal Total Poten Resistance	iometer
PApplied	-	Power Dissipation	
V _{Rated}	=	500 Volts for RV4X	XA&XB
	F	500 Volts for 2RV7X	XA&XB
	-	350 Volts for RV2X	XA&XB
	=	350 Volts for RV4X	XA&XB
	= 350 Volts for RV5XXA&XB		
	= 350 Volts for RV6XXA&XB		
	 250 Volts for RV1XXA&XB 		
	= 200 Volts for All Other Types		

Environment	π _E
G _B	1.0
G _F	2.0
G _B G _F G _M	19
NS	8.0
NU	29
A _{IC}	40
A _{IC} A _{IF}	65
AUC	48
AUF	78
A _{RW}	46
A _{RW} S _F	.50

25

66 1200

MF

 M_{L}

CL

Environment Factor - π_E

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	2.5
Lower	5.0

9.15 RESISTORS, VARIABLE, NONWIREWOUND, FILM AND PRECISION

SPECIFICATION	
MIL-R-39023	
MIL-R-23285	

STYLE RQ RVC DESCRIPTION Variable, Nonwirewound, Film, Precision Variable, Nonwirewound, Film

$\lambda_p = \lambda_b \pi_{TAPS} \pi_R \pi_V \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ _b					
		(RQ Style	e Only)	_	
T _A (℃)	.1	.3	Stress .5	.7	.9
0 10 20 30 40 50 60 70 80 90 100 110	.023 .024 .026 .032 .037 .044 .053 .068 .092 .13 .20	.024 .026 .029 .032 .036 .042 .051 .064 .083 .11 .17	.026 .029 .032 .036 .041 .049 .060 .060 .076 .10 .14	.028 .031 .035 .040 .047 .057 .070 .091 .12	.031 .034 .039 .045 .053 .065 .083 .11
$\lambda_{b} = .018 \exp\left(\frac{T+273}{343}\right)^{7.4} \times \exp\left(\left(\frac{S}{2.55}\right) \left(\frac{T+273}{273}\right)^{3.6}\right)$					
T :	= Ambie	nt Temper	ature (°C)		
S = Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation.					

Resistance Factor - np

Resistance Range (Ohms)	π _R
Up to 10K	1.0
>10K to 50K	1.1
>50K to 200K	1.2
>200K to 1M	1.4
>1M	1.8

(RVC Style Only)					
+ (00)			Stress	~	•
T _A (℃)	.1	.3	.5	.7	.9
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170	.028 .029 .030 .031 .032 .034 .036 .039 .043 .048 .055 .064 .077 .096 .12 .17 .24 .37	.031 .032 .033 .035 .037 .040 .044 .049 .055 .063 .075 .091 .11 .15 .20 .29 .44	.033 .035 .037 .040 .043 .047 .053 .060 .070 .083 .10 .13 .17 .23 .33 .50	.036 .038 .041 .045 .050 .056 .064 .064 .09 .11 .14 .18 .25 .36 .53	.039 .042 .046 .051 .058 .066 .078 .093 .11 .15 .19 .26 .37 .55
$\lambda_{b} = .0257 \exp\left(\frac{T+273}{398}\right)^{7.9} x$ $\exp\left(\left(\frac{S}{2.45}\right) \left(\frac{T+273}{273}\right)^{4.3}\right)$					
т	- Ambie	ent Tempe	rature (°C))	
S	= Ratio	Ratio of Operating Power to Rated Power.			

Base Failure Rate - λ_h

Ratio of Operating Power to Rated Power.
 See Section 9.16 for S Calculation.

πv

MIL-HDBK-217F

9.15 RESISTORS, VARIABLE, NONWIREWOUND, FILM AND PRECISION

TAPS					
N TAPS	* TAPS	N TAPS	TAPS	N TAPS	TAPS
3	1.0	13	2.7	23	5.2
4	1.1	14	2.9	24	5.5
5	1.2	15	3.1	25 5.8	
6	1.4	16	3.4	26	6.1
7	1.5	17	3.6	27	6.4
8	1.7	18	3.8	28	6.7
9	1.9	19	4.1	29	7.0
10	2.1	20	4.4	30	7.4
11	2.3	21	4.6	31	7.7
12	2.5	22	4.9	32	8.0
3					
(N _{TAPS}) ²					
^π TAPS	PS = $\frac{\left(N_{TAPS}\right)^{\frac{3}{2}}}{25} + 0.792$				
NTAPS				,	
	including the Wiper and Terminations.			ations.	

Potentiometer Taps Factor - TAPS

1

Quality	Factor	-	πO
---------	--------	---	----

	<u>u</u>
Quality	^π Q
MIL-SPEC	2
Lower	4

Environment Factor - π_{r}

Environment	π _E			
G _B	1.0			
G _F	3.0			
G _F G _M	14			
NS	7.0			
NU	24			
A _{IC}	6.0			
AIF	12			
AUC	20			
A _{UF}	30			
A _{RW}	39			
S _F	.50			
M _F	22			
м _L	57			
CL	1000			

			· · · · · · · · · · · · · · · · · · ·	
0 to 0.8 >0.8 to 0.9 >0.9 to 1.0			1.00	
			1.05	
			1.20	
•V Applied		√R _P P _{Applied}		
R _P	=	Nominal Total Poten Resistance	tiometer	
P _{Applied}	=	Power Dissipation		
V Rated	8	250 Volts for RQ090	, 110, 150, 200,	

Applied Voltage* Rated Voltage

= 300 = 500 Volts for RQ100, 160, 210 = 350 Volts for RVC5, 6

Source: http://www.assistdocs.com Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

. . .

......

9.16 CALCULATION OF STRESS RATIO FOR POTENTIOMETERS

and the second second

.

Stress Ratio (S) Calculation for Rheostats			
$S = \frac{\left({}^{I}_{op_{max}}\right)^{2}}{{}^{\pi}_{GANGED}\left({}^{I}_{max_{rated}}\right)^{2}}$			
l _{opmax}	-	Maximum current which will be passed through the rheostat in the circuit.	
l _{maxrated}	-	Current rating of the potentiometer. If current rating is not given, use:	
Imaxrated	÷	√ ^P rated ^{/P} P	
P rated	-	Power Rating of Potentiometer	
Rp	-	Nominal Total Potentiometer Resistance	
[#] GANGED	-	Factor to correct for the reduction in effective rating of the potentiometer due to the close proximity of two or more potentiometers when they are ganged together on a common shaft. See below.	

Stress Ratio (S) Calculation for Potentiometers Connected Conventionally				
$S = \frac{P_{APPLIED}}{\pi_{EFF} \times \pi_{GANGED} \times P_{RATED}}$				
PApplied	-	Equivalent power input to the potentiometer when it is not loaded (i.e., wiper lead disconnected). Calculate as follows:		
P _{Applied}	-	Vin Rp		
V _{in}	=	Input Voltage		
R _P	-	Nominal Total Potentiometer Resistance		
PRATED	-	Power Rating of Potentiometer		
⁷⁷ GANGED	-	Factor to correct for the reduction in effective rating of the potentiometer due to the close proximity of two or more potentiometers when they are ganged together on a common shaft. See below.		
*EFF	-	Correction factor for the electrical loading effect on the wiper contact of the potentiometer. Its value is a function of the type of potentiometer, its resistance, and the load resistance. See next page.		

Ganged-Potentiometer Factor - π_{GANGED}

Number of Sections	First Potentiometer Next to Mount	Second in Gang	Third in Gang	Fourth in Gang	Fifth in Gang	Sixth in Gang
Single	1.0			Not Applicable		
Two	0.75	0.60		Not	Applicable	
Three	0.75	0.50	0.60	Not	Applicable	
Four	0.75	0.50	0.50	0.60	Not	Applicable
Five	0.75	0,50	0.40	0.50	0.60	Not Applicable
Six	0.75	0.50	0.40	0.40	0.50	0.60

9.16 CALCULATION OF STRESS RATIO FOR POTENTIOMETERS

				Err			
_{Բլ} /Զթ	0.2	К 0.3	H 0.5	1.0			
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.5 2.0 3.0 4.0 5.0 10.0	.04 .13 .22 .31 .38 .45 .51 .59 .63 .74 .80 .87 .90 .92 .96 1.00	.03 .09 .16 .23 .35 .40 .45 .53 .65 .73 .81 .86 .88 .94 .99	.02 .05 .10 .15 .20 .25 .29 .33 .37 .40 .53 .62 .72 .78 .82 .90 .99	.01 .03 .05 .08 .11 .14 .17 .20 .25 .36 .44 .56 .69 .83 .98			
^π EFF	$\pi_{\text{EFF}} = \frac{R_{\text{L}}^2}{R_{\text{L}}^2 + K_{\text{H}} \left(R_{\text{P}}^2 + 2R_{\text{P}}R_{\text{L}}\right)}$						
RL	 Load resistance (If R_L is variable, use lowest value). R_L is the total resistance between the wiper arm and one end of the potentiometer. 						
Rp		Nominal Total Potentiometer Resistance					
к _н	= St	Style Constant. See K _H Table.					

Loaded Potentiometer Derating Factor - π_{EFF}

Style Constant - KH

Potentiometer MIL-SPEC	Style Type	к _н				
MIL-R-19	RA	0.5				
MIL-R-22	RP	1.0				
MIL-R-94	RV	0.5				
MIL-R-12934	RR1000, 1001,	0.3				
	1003, 1400,					
	2100, 2101,					
	2102, 2103					
MIL-R-12934	All Other Types	0.2				
MIL-R-22097	RJ11, RJ12	0.3				
MIL-R-22097	All Other Types	0.2				
MIL-R-23285	RVC	0.5				
MIL-R-27208	RT22, 24, 26, 27	0.2				
MIL-R-27208	All Other Types	0.3				
MIL-R-39002	RK	0.5				
MIL-R-39015	RTR 22, 24	0.2				
MIL-R-39015	RTR12	0.3				
MIL-R-39023	RQ	0.3				
MIL-R-39035	RJR	0.3				

9.17 RESISTORS, EXAMPLE

Example

Given: Type RV1SAYSA505A variable 500K ohm resistor procured per MIL-R-94, rated at 0.2 watts is being used in a fixed ground environment. The resistor ambient temperature is 40°C and is dissipating 0.06 watts. The resistance connected to the wiper contact varies between 1 megohm and 3 megohms. The potentiometer is connected conventionally without ganging.

The appropriate model for RV style variable resistors is given in Section 9.14. Based on the given information the following model factors are determined from the tables shown in Section 9.14 and by following the procedure for determining electrical stress for potentiometers as described in Section 9.16.

From Se	ection 9.16 ^P APPLIED ^π EFF	-	.06W .62	K _H = .5 for MIL-R-94 (Section 9.16 Table)
	<i>^π</i> GANGED	=	1.0	Not Ganged (Section 9.16 Table, Single Section, First Potentiometer)
	^π RATED	=	.2W	
	S	=	P _{APPLIE} ^π EFF ^x ^π GANGE	$\frac{10}{D^{\times \pi} RATED} = \frac{.06}{(.62)(1.0)(.2)} = .48$
From Se	ction 9.14			
	λ _b		.047	$T_A = 40^{\circ}C$, S Rounded to .5
	π _R	=	1.4	500K ohms
	^π TAPS	=	1.0	3 Taps, Basic Single Potentiometer
	π _V	=	1.0	V _{RATED} = 250 Volts for RV1 prefix
				$V_{\text{APPLIED}} = \sqrt{(500,000)(.06)} = 173 \text{ volts}$
				$V_{\text{APPLIED}} V_{\text{RATED}} = \frac{173}{250} = .69$
	πΟ	z	2.5	
	πE	æ	2.0	
	λp	-	^λ b ^π TAPS ^π R ^π V ^π Q	πΕ
		×	(.047)(1.0)(1.4)(1.0)(2	2.5)(2.0) = .33 Failures/10 ⁶ Hours

10.1 CAPACITORS, FIXED, PAPER, BY-PASS

SPECIFICATION MIL-C-25 MIL-C-12889 DESCRIPTION Paper, By-pass, Filter, Blocking, DC Paper, By-pass, Radio Interference Reduction AC and DC

 $\lambda_p = \lambda_b \pi_C V \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_{D} (T = 85°C Max Rated) (All MIL-C-12889; MIL-C-25 Styles CP25, 26, 27, 28, 29, 40, 41, 67, 69, 70, 72, 75, 76, 77, 78, 80, 81, 82; Characteristics F. F.)

Base Failure Rate - λ _b						
(T = 125°C Max Rated)						
(MIL-C-25 Styles CP 4, 5, 8, 9, 10, 11, 12 13;						
Characteristic K)						

	Characteristics E, F)						
	Stress						
T _A (℃)	.1	.3	.5	.7	.9		
0	.00088	.0011	.0036	.015	.051		
10	.00089	.0011	.0036	.016	.052		
20	.00092	.0011	.0037	.016	.054		
30	.00097	.0012	.0039	.017	.057		
40	.0011	.0013	.0044	.019	.063		
50	.0013	.0016	.0052	.022	.075		
60	.0017	.0021	.0069	.030	.10		
70	.0027	.0034	.011	.048	.16		
80	.0060	.0074	.024	.10	.35		

$$\lambda_{\rm b} = .00086 \left[\left(\frac{\rm S}{.4} \right)^5 + 1 \right] \exp \left(2.5 \left(\frac{\rm T+273}{358} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

T _A (℃)	.1	.3	Stress .5	.7	.9
0	.00086	.0011	.0035	.015	.0 5 1
10	.00087	.0011	.0035	.015	.051
20	.00087	.0011	.0035	.015	.051
30	.00088	.0011	.0035	.015	.051
40	.00089	.0011	.0036	.015	.052
50	.00091	.0011	.0037	.016	.053
60	.00095	.0012	.0039	.017	.056
70	.0010	.0013	.0041	.018	.060
80	.0011	.0014	.00 46	.020	.067
90	.0014	.0017	.0056	.024	.081
100	.0019	.0023	.0076	.033	.11
110	.0030	.0037	.012	.052	.18
120	.0063	.0078	.026	.11	.37

$$\lambda_{b} = .00086 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T+273}{398} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.1 CAPACITORS, FIXED, PAPER, BY-PASS

Capacitance Factor - π_{CV}						
Capacitance, C (µF)	^π CV					
MIL-C-25* .0034 .15 2.3 16. MIL-C-12889 All	0.7 1.0 1.3 1.6 1.0					
• $\pi_{\rm CV} = 1.2 {\rm C}^{.095}$						

Environment Factor - π _Ε					
Environment	π _E				
G _B	1.0				
G _B G _F	2.0				
G _M	9.0				
NS	5.0				
NU	15				
AIC	6.0				
A _{IF}	8.0				
Auc	17				
AUF	32				
A _{RW}	22				
S _F	.50				
M _F	12				
м	32				
с _L	570				

Quality Factor - π_Q

Quality	^π Q
MIL-SPEC	3.0
Lower	7.0

10.2 CAPACITORS, FIXED, PAPER, FEED-THROUGH

SPECIFICATION MIL-C-11693

STYLE CZR and CZ DESCRIPTION

Paper, Metallized Paper, Metallized Plastic, RFI Feed-Through Established Reliability and Non-Established Reliability

$\lambda_p = \lambda_b \pi_{CV} \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_{b} (T = 85°C Max Rated) Base Failure Rate - λ_{D} (T = 150°C Max Rated)

(T = 85°C Max Hated) (Characteristics E, W)								
	Stress							
T _A (℃)	.1	.3	.5	.7	.9			
0	.0012	.0014	.0047	.020	.069			
10	.0012	.0015	.0048	.021	.070			
20	.0012	.0015	.0050	.021	.072			
30	.0013	.0016	.0053	.023	.076			
40	.0014	.0018	.0058	.025	.084			
50	.0017	.0021	.0069	.030	.10			
60	.0023	.0028	.0092	.039	.13			
70	.0037	.0045	.015	.064	.21			
80	.0080	.0099	.032	.14	.47			
	$[(S)^{5}] ((T+273)^{18})$							

 $\lambda_{\rm b} = .00115 \left[\left(\frac{\rm S}{.4} \right)^3 + 1 \right] \exp \left(2.5 \left(\frac{1+2/3}{358} \right)^{15} \right)$ T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - $\lambda_{\rm D}$ (T = 125°C Max Rated)

(Characteristic K)

(Characteristic K)						
		S	tress			
T _A (℃)	.1	.3	.5	.7	.9	
0	.0012	.0014	.0047	.020	.068	
10	.0012	.0014	.0047	.020	.068	
20	.0012	.0014	.0047	.020	.068	
30	.0012	.0014	.0047	.020	.069	
40	.0012	.0015	.0048	.021	.070	
50	.0012	.0015	.0049	.021	.072	
60	.0013	.0016	.0052	.022	.075	
70	.0014	.0017	.0055	.024	.08	
80	.0015	.0019	.0062	.027	.09	
90	.0019	.0023	.0075	.032	.11	
100	.0025	.0031	.010	.044	.15	
110	.0040	.005	.016	.07	.24	
120	.0084	.010	.034	.15	.49	
$\lambda_{b} = .00115 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T+273}{398} \right)^{1.8} \right)$ T = Ambient Temperature (°C) S = Ratio of Operating to Rated Voltage						
		ge is the su		-	oltage	

(Characteristic P)							
Stress							
T _A (℃)	.1	.3	.5	.7	.9		
ο	.0012	.0014	.0047	.020	.068		
10	.0012	.0014	.0047	.020	.068		
20	.0012	.0014	.0047	.020	.068		
30	.0012	.0014	.0047	.020	.068		
40	.0012	.0014	.0047	.020	.068		
50	.0012	.0015	.0048	.020	.069		
60	.0012	.0015	.0048	.021	.070		
70	.0012	.0015	.0049	.021	.071		
80	.0013	.0016	.0051	.022	.074		
90	.0013	.0017	.0055	.023	.079		
100	.0015	.0018	.0060	.026	.087		
110	.0017	.0022	.0071	.03	.10		
120	.0022	.0028	.0091	.039	.13		
130	.0033	.0040	.013	.057	.19		
140	.0058	.0072	.024	.10	.34		
150	.014	.017	.057	.24	.82		

$$A_{b} = .00115 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T+273}{423} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.2 CAPACITORS, FIXED, PAPER, FEED-THROUGH

Capacitation Factor - ACV				
Capacitance, C (µF)	π _{CV}			
0.0031	.70			
0.061	1.0			
1.8	1.5			
$\pi_{\rm CV} = 1.4 {\rm C}^{0.12}$				

Capacitance	Factor	- TCV
-------------	--------	-------

Quality I	actor	-	πQ
-----------	-------	---	----

Quality	π _Q
м	1.0
Non-Established Reliability	3.0
Lower	10

Environment Factor - π _E			
Environment	π _E		
GB	1.0		
G _F	2.0		
G _F G _M	9.0		
NS	7.0		
NU	15		
A _{IC}	6.0		
AIF	8.0		
AUC	17		
AUF	28		
A _{RW}	22		
S _F	.50		
M _F	12		
ML CL	32		
cL	570		

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

.

.

÷

10.3 CAPACITORS, FIXED, PAPER AND PLASTIC FILM

SPECIFICATION	
MIL-C-14157	
MIL-C-19978	•

STYLE CPV CQR and CQ DESCRIPTION Paper and Plastic Film, Est. Rel. Paper and Plastic Film, Est. Rel. and Non-Est. Rel.

$$\lambda_{p} = \lambda_{b} \pi_{CV} \pi_{Q} \pi_{E}$$
 Failures/10⁶ Hours

	Base Failure Rate - λ _b				
(T = 65°C Max Rated) (MIL-C-14157 Style CPV07; MIL-C-19978 Characteristics P, L)					
		St	Tess		
T _A (°C)	.1	.3	.5	.7	.9
0	.00053	.00065	.0021	.0092	.031
10	.00055	.00069	.0022	.0096	.032
20	.00061	.00075	.0025	.011	.036
30	.00071	.00088	.0029	.012	.042
40	.00094	.0012	.0038	.016	.055
50	.0015	.001 9	.0061	.026	.088
60	.0034	.0042	.014	.059	.20
^х ь =	.0005 [($\left(\frac{5}{4}\right)^5 + 1$	exp(2.5	(<u>T+273</u> 338)	18)
 T = Ambient Temperature (°C) S = Ratio of Operating to Rated Voltage 					
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.					

Base Failure Rate - λ_b (T = 125°C Max Rated) (MIL-C-14157 Style CPV09 and MIL-C-19978 Characteristics K, Q, S)

		alaciensik			_
		S	tress		
T _A (℃)	.1	.3	.5	.7	.9
0	.00050	.00062	.0020	.0087	.029
10	.00050	.00062	.0020	.0088	.029
20	.00051	.00062	.0020	.0088	.029
30	.00051	.00063	.0021	.0089	.030
40	.00052	.00064	.0021	.009	
50	.00053	.00066	.0021	.009	.030 .031
60	.00055	.00068			
70	.00059		.0022	.0096	.032
80		.00073	.0024	.010	.035
	.00067	.00083	.0027	.012	.039
90	.00081	.0010	.0033	.014	.047
100	.0011	.0013	.0044	.019	.064
110	.0018	.0022	.0071	.030	.10
120	.0037	.0045	.015	.064	.21
T S Oper		nt Tempera of Operatin ge is the si	ature (°C) ig to Rate	d Voltage	

Base Failure Rate - λ _b
(T = 85°C Max Rated)
(MIL-C-14157 Style CPV17;
MIL-C-19978 Characteristics E, F, G, M)

i i		S	tress		
T _A (°C)	.1	.3	.5	.7	.9
0	.00051	.00063	.0021	.0089	.030
10	.00052	.00064	.0021	.0090	.030
20	.00054	.00066	.0022	.0093	.031
30	.00057	.00070	.0023	.00 99	.033
40	.00063	.00077	.0025	.011	.037
50	.00074	.00092	.0030	.013	.043
60	.00099	.0012	.0040	.017	.058
70	.0016	.0020	.0064	.028	.093
80	.0035	.0043	.014	.061	.20
λ _b -	.0005 [($\left(\frac{5}{4}\right)^5 + 1$	exp (2.5	$\left(\frac{T+273}{358}\right)$	18)
T = Ambient Temperature (°C) S = Ratio of Operating to Rated Voltage Operating voltage is the sum of applied D.C. voltage					

the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b (T = 170°C Max Rated) (MIL-C-19978 Characteristic T)

(MIL-C-19978 Characteristic T)					
		S	ress		
T _A (℃)	.1	.3	.5	.7	.9
0	.00050	.00062	.0020	.0087	.029
10	.00050	.00062	.0020	.0087	.029
20	.00050	.00062	.0020	.0087	.029
30	.00050	.00062	.0020	.0087	.029
40	.00050	.00062	.0020	.0087	.029
50	.00050	.00062	.0020	.0088	.030
60	.00051	.00063	.0021	.0088	.030
70	.00051	.00063	.0021	.0089	.030
80	.00052	.00065	.0021	.0091	.031
90	.00054	.00066	.0022	.0093	.031
100	.00056	.00069	.0023	.0097	.033
110	.00060	.00074	.0024	.010	.035
120	.00067	.00083	.0027	.012	.039
130	.0007 9	.00098	.0032	.014	.046
140	.0010	.0013	.0041	.018	.060
150	.0015	.0018	.006	.026	.087
160	.0026	.0032	.011	.046	.15
170	.0061	.0075	.025	.11	.36
	[/3	ı\5 ٦	/	17.072)	18 \
ک ہ =	$.0005 \left(\frac{S}{.4} \right)$	$\frac{2}{4}$ + 1	exp (2.5	$\left(\frac{1+273}{442}\right)$	``)
	T = Ambient Temperature (°C)				
S = Ratio of Operating to Rated Voltage					
Operating voltage is the sum of applied D.C. voltage					
and peak A.C. voltage.					

ł.

10.3 CAPACITORS, FIXED, PAPER AND PLASTIC FILM

Capacitance Factor -	^π CV
Capacitance, C (μF)	πcv
MIL-C-14157: * .0017 .027 .20 1.0 MIL-C-19978: ** .00032 .033 1.0 15.0	.70 1.0 1.3 1.6 .70 1.0 1.3 1.6
$\pi_{\rm CV} = 1.6 {\rm C}^{0.13}$	
$\pi_{\rm CV} = 1.3 {\rm C}^{0.077}$	

Environment Factor - π_E			
Environment	π _E		
G _B	1.0		
G _F	2.0		
G _M	8.0		
NS	5.0		
NU	14		
A _{IC}	4.0		
A _{IC} A _{IF}	6.0		
Auc	11.0		
AUF	20		
A _{RW}	20		
S _F	.50		
M _F	11		
ML CL	29		
CL	530		

Quality	Factor	-	π
---------	--------	---	---

Quality	πQ
S	.03
R	.10
Р	.30
м	1.0
L	3.0
MIL-C-19978, Non-Est. Rel.	10
Lower	30

ı

10.4 CAPACITORS, FIXED, METALLIZED PAPER, PAPER-PLASTIC AND PLASTIC

SPECIFICATION	
MIL-C-18312	
MIL-C-39022	

STYLE CH CHR

DESCRIPTION

Metallized Paper, Paper-Plastic, Plastic Metallized Paper, Paper-Plastic, Plastic, Established Reliability

$$\lambda_{p} = \lambda_{b} \pi_{CV} \pi_{O} \pi_{F}$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b (T = 85°C Max Rated) (MIL-C-39022 Characteristic 9 and 12 (50 Volts rated), Characteristic 49: and MIL-C-18312 Characteristic R)

Characteristic 49; and MIL-C-18312 Characteristic R)					
T _A (℃)	.1	.3	tress .5	.7	.9
0	.00070	.00087	.0029	.012	.041
10	.00072	.00089	.0029	.012	.042
20	.00074	.00091	.0030	.013	.043
30	.00078	.00097	.0032	.014	.046
40	.00086	.0011	.0035	.015	.051
50	.0010	.0013	.0041	.018	.06
60	.0014	.0017	.0055	.024	.08
70	.0022	.0027	.0089	.038	.13
80	.0048	.0059	.019	.084	.28

$$\lambda_{b} = .00069 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T+273}{358} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S - Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_D (T = 125°C Max Rated) (MIL-C-39022 Characteristic 9 and 12 (above 50 Volts rated), Characteristics 1, 10, 19, 29, 59; and MIL-C-18312 Characteristic N)

		<u>-16312 Cr</u> S	tress		·
T _A (℃)	.1	.3	.5	.7	.9
0	.00069	.00086	.0028	.012	.041
10	.00069	.00086	.0028	.012	.041
20	.00070	.00086	.0028	.012	.041
30	.00070	.00087	.0028	.012	.041
40	.00071	.00088	.0029	.012	.042
50	.00073	.00090	.003.	.013	.043
60	.00076	.00094	.0031	.013	.045
70	.00082	.0010	.0033	.014	.048
80	.00092	.0011	.0037	.016	.054
90	.0011	.0014	.0045	.019	.065
100	.0015	.0019	.0061	.026	.088
110	.0024	.0030	.0098	.042	.14
120	.0051	.0063	.020	.088	.30

$$\lambda_{b} = .00069 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T+273}{398} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.4 CAPACITORS, FIXED, METALLIZED PAPER, PAPER-PLASTIC AND PLASTIC

Conceilance C (UE)	
Capacitance, C (μF)	^π CV
0.0029	.70
0.14	1.0
2.4	1.3

ł

Quality Factor - π_Q			
Quality	^π Q		
S	0.03		
R	.10		
Р	.30		
м	1.0		
L	3.0		
MIL-C-18312, Non-Est. Rel.	7.0		
Lower	20		

Environment Factor - π_E		
Environment	π _E	
G _B	1.0	
G _F	2.0	
GM	8.0	
N _S	5.0	
NU	14	
A _{IC}	4.0	
AIF	6.0	
AUC	11.0	
AUF	20	
A _{RW}	20	
S _F	.50	
M _F	11	
ML	29	
ML CL	530	

10-8

10.5 CAPACITORS, FIXED, PLASTIC AND METALLIZED PLASTIC

SPECIFICATION MIL-C-55514 STYLE CFR **DESCRIPTION** Plastic, Metallized Plastic, Est. Rel.

 $\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm CV} \pi_{\rm Q} \pi_{\rm E}$ Failures/10⁶ Hours

Base Failure Rate - λ _b (T = 85°C Max Rated)						
	(Characteristics M, N)					
T _A (℃)	.1	.3	Stress .5	.7	.9	
ο	.0010	.0012	.0041	.018	.059	
10	.0010	.0013	.0042	.018	.060	
20	.0011	.0013	.0043	.018	.062	
30	.0011	.0014	.0045	.020	.066	
40	.0012	.0015	.0050	.022	.073	
50	.0015	.0018	.0059	.026	.086	
60	.0020	.0024	.0079	.034	.11	
70	.0032	.0039	.013	.055	.18	
80	.0069	.0085	.028	.12	.40	
λ _b = .00	$\lambda_{b} = .00099 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T+273}{358} \right)^{18} \right)$					
T.	T = Ambient Temperature (°C)					
s.	S = Ratio of Operating to Rated Voltage					
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.						

Base Failure Rate - $\lambda_{\rm D}$

_		-	tress	_	_
T _A (℃)	.1	.3	.5	.7	.9
0	.00099	.0012	.0040	.017	.058
10	.0010	.0012	.0040	.017	.058
20	.0010	.0012	.0041	.017	.059
30	.0010	.0012	.0041	.018	.059
40	.0010	.0013	.0041	.018	. 06 0
50	.0011	.0013	.0043	.018	.062
60	.0011	.0014	.0044	.019	.064
70	.0012	.0015	.0048	.020	.069
80	.0013	.0016	.0054	.023	.077
90	.0016	.0020	.0065	.028	.094
100	.0022	.0027	.0087	.038	.13
110	.0035	.0043	.014	.06	.20
120	.0073	.0090	.029	.13	.43

$$\lambda_{b} = .00099 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T+273}{398} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

CAPACITORS, FIXED, PLASTIC AND METALLIZED PLASTIC 10.5

.....

Capacitance	Factor	-	πcv
-------------	--------	---	-----

Capacitance, C (µF)	π _{CV}
0.0049	.70
0.33	1.0
7.1	1.3
38.	1.5
$\pi_{\rm CV} = 1.1 {\rm C}^{0.085}$	

Quality Factor - π_Q

Quality	π _Q
S	.030
R	.10
Р	.30
м	1.0
Lower	10

Environment Facto	r-π Ε
Environment	π _E
G _B	1.0
G _F	2.0
G _F G _M	10
NS	5.0
NU	16
	6
A _{IC} A _{IF}	11
AUC	18
AUF	30
A _{RW}	23
S _F	.50
M _F	13
ML	34
ML CL	610

- E ----

10.6 CAPACITORS, FIXED, SUPER-METALLIZED PLASTIC

SPECIFICATION MIL-C-83421

STYLE CRH

DESCRIPTION Super-Metallized Plastic, Est. Rel.

$$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm CV} \pi_{\rm Q} \pi_{\rm E}$$
 Failures/10⁶ Hours

Base	Failure Hate - Ab	
(T = 1)	25°C Max Bated)	

	<u>() :</u>	120 0 11	tress	1	
T _A (℃)	.1	.3	.5	.7	.9
0 10 20 30 40 50 60 70 80	.00055 .00055 .00056 .00056 .00057 .00058 .00061 .00065 .00073	.00068 .00068 .00069 .00069 .00070 .00072 .00075 .00081 .00091	.0022 .0022 .0023 .0023 .0023 .0024 .0025 .0026 .0030	.0096 .0096 .0097 .0098 .0099 .010 .011 .011 .011	.032 .032 .033 .033 .033 .034 .036 .038 .038
90 100 110 120	.00089 .0012 .0019 .0040	.0011 .0015 .0024 .0050	.0036 .0049 .0078 .016	.015 .021 .033 .070	.052 .07 .11 .24
λ _b =	.00055[($\left(\frac{s}{4}\right)^5 + 1$	exp(2.5	$\left(\frac{T+273}{398}\right)$) ¹⁸)

S - Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Quality	Factor	-	π_{O}
---------	--------	---	-----------

Quality	π_Q
S	.020
R	.10
Р	.30
м	1.0
Lower	10

Capacitance Factor - π_{CV}			
Capacitance, C (μF)	πcv		
.001	.64		
0.14	1.0		
2.4	1.3		
23	1.6		
$\pi_{\rm CV} = 1.2 {\rm C}^{0.092}$			

Environment Factor - π_m

	E
Environment	πΕ
G _B	1.0
G _F	4.0
G _M	8.0
NS	5.0
NU	14
AIC	4.0
A _{IF}	6.0
AUC	13.0
AUF	20
A _{RW}	20
S _F	.50
M _F	11
ML	29
ML CL	530

10.7 CAPACITORS, FIXED, MICA

SPECIFICATION	STYLE
MIL-C-5	CM
MIL-C-39001	CMR

DESCRIPTION MICA (Dipped or Molded) MICA (Dipped), Established Reliability

$\lambda_p = \lambda_b \pi_{CV} \pi_Q \pi_E$ Failures/10⁶ Hours

	ſ	T=70°C Ma	Rate - λ _b ax Rated) p. Range M	A)	
T _A (°C)	.1	.3	tress .5	.7	.9
0 10 20 30 40 50 60 70	.00030 .00047 .00075 .0012 .0019 .0031 .0049 .0078	.00041 .00066 .0011 .0017 .0027 .0043 .0068 .011	.00086 .0014 .0022 .0035 .0056 .0089 .014 .023	.0019 .0030 .0047 .0075 .012 .019 .030 .049	.0036 .0058 .0092 .015 .023 .037 .059 .095
T S	 Ratio d 	nt Temper of Operatir	ature (°C) ng to Rated	d Voltage	,
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.					

Base Failure Rate - λ _b
(T=85°C Max Rated)
(MIL-C-5, Temp, Range N)

	1		p. nange i	<u> </u>	
	Stress				
T _A (°C)	.1	.3	.5	.7	.9
0	.00017	.00024	.00051	.0011	.0021
10	.00027	.00038	.00079	.0017	.0033
20	.00042	.00059	.0012	.0027	.0052
30	.00066	.00093	.0019	.0042	.0081
40	.0010	.0015	.003	.0065	.013
50	.0016	.0023	.0047	.010	.020
60	.0025	.0036	.0074	.016	.031
70	.0040	.0056	.012	.025	.048
80	.0062	.0087	.018	.039	.076
$\lambda_{b} = 8.6 \times 10^{-10} \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(16 \left(\frac{T+273}{358} \right) \right)$					
T = Ambient Temperature (°C) S = Ratio of Operating to Rated Voltage					

Operating voltage is the sum of applied D.C. voltage	
and peak A.C. voltage.	

- D

Base Failure Rate - λ_b (T=125°C Max Rated) (MIL-C-5, Temp. Range O; MIL-C-39001 Temp. Range O) Stress T (°C) 1 .3 .5 .7 .9

		Stress				
$\begin{array}{rcrcrcrcrcrcr} 10 & .00008 & .00011 & .00022 & .00048 & .00093\\ 20 & .00011 & .00016 & .00033 & .00071 & .0014\\ 30 & .00017 & .00024 & .00050 & .0011 & .0021\\ 40 & .00025 & .00036 & .00074 & .0016 & .0031\\ 50 & .00038 & .00053 & .0011 & .0024 & .0046\\ 60 & .00057 & .0008 & .0017 & .0036 & .0069\\ 70 & .00085 & .0012 & .0025 & .0053 & .010\\ 80 & .0013 & .0018 & .0037 & .008 & .016\\ 90 & .0019 & .0027 & .0055 & .012 & .023\\ 100 & .0028 & .0040 & .0083 & .018 & .035\\ 110 & .0042 & .0059 & .012 & .027 & .052\\ 120 & .0063 & .0089 & .018 & .040 & .077\\ \lambda_{b} = 8.6 \times 10^{-10} \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(16 \left(\frac{T+273}{398} \right) \right) \\ T & = & Ambient Temperature (°C) \end{array}$	T _A (℃)	.1	.3	.5	.7	.9
$\begin{array}{rcrcrcrcrc} 20 & .00011 & .00016 & .00033 & .00071 & .0014 \\ 30 & .00017 & .00024 & .00050 & .0011 & .0021 \\ 40 & .00025 & .00036 & .00074 & .0016 & .0031 \\ 50 & .00038 & .00053 & .0011 & .0024 & .0046 \\ 60 & .00057 & .0008 & .0017 & .0036 & .0069 \\ 70 & .00085 & .0012 & .0025 & .0053 & .010 \\ 80 & .0013 & .0018 & .0037 & .008 & .016 \\ 90 & .0019 & .0027 & .0055 & .012 & .023 \\ 100 & .0028 & .0040 & .0083 & .018 & .035 \\ 110 & .0042 & .0059 & .012 & .027 & .052 \\ 120 & .0063 & .0089 & .018 & .040 & .077 \\ \lambda_{b} = 8.6 \times 10^{-10} \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(16 \left(\frac{T+273}{398} \right) \right) \\ T & = & \text{Ambient Temperature (°C)} \end{array}$	0	.00005	.00007	.00015	.00032	.00062
$\begin{array}{rcrcrcrcrcrcrc} 30 & .00017 & .00024 & .00050 & .0011 & .0021 \\ 40 & .00025 & .00036 & .00074 & .0016 & .0031 \\ 50 & .00038 & .00053 & .0011 & .0024 & .0046 \\ 60 & .00057 & .0008 & .0017 & .0036 & .0069 \\ 70 & .00085 & .0012 & .0025 & .0053 & .010 \\ 80 & .0013 & .0018 & .0037 & .008 & .016 \\ 90 & .0019 & .0027 & .0055 & .012 & .023 \\ 100 & .0028 & .0040 & .0083 & .018 & .035 \\ 110 & .0042 & .0059 & .012 & .027 & .052 \\ 120 & .0063 & .0089 & .018 & .040 & .077 \\ \lambda_{b} = 8.6 \times 10^{-10} \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(16 \left(\frac{T+273}{398} \right) \right) \\ T & = & Ambient Temperature (°C) \end{array}$	10	.00008	.00011	.00022	.00048	.00093
$\begin{array}{rcrcrcrc} 40 & .00025 & .00036 & .00074 & .0016 & .0031 \\ 50 & .00038 & .00053 & .0011 & .0024 & .0046 \\ 60 & .00057 & .0008 & .0017 & .0036 & .0069 \\ 70 & .00085 & .0012 & .0025 & .0053 & .010 \\ 80 & .0013 & .0018 & .0037 & .008 & .016 \\ 90 & .0019 & .0027 & .0055 & .012 & .023 \\ 100 & .0028 & .0040 & .0083 & .018 & .035 \\ 110 & .0042 & .0059 & .012 & .027 & .052 \\ 120 & .0063 & .0089 & .018 & .040 & .077 \\ \lambda_{\rm b} = 8.6 {\rm x} 10^{-10} \left[\left(\frac{{\rm S}}{.4} \right)^3 + 1 \right] \exp \left(16 \left(\frac{{\rm T} + 273}{398} \right) \right) \\ {\rm T} & = & {\rm Ambient Temperature (°C)} \end{array}$	20	.00011	.00016	.00033	.00071	.0014
$\begin{array}{rcrcrcrcrcrcrcrcrcl} 50 & .00038 & .00053 & .0011 & .0024 & .0046 \\ 60 & .00057 & .0008 & .0017 & .0036 & .0069 \\ 70 & .00085 & .0012 & .0025 & .0053 & .010 \\ 80 & .0013 & .0018 & .0037 & .008 & .016 \\ 90 & .0019 & .0027 & .0055 & .012 & .023 \\ 100 & .0028 & .0040 & .0083 & .018 & .035 \\ 110 & .0042 & .0059 & .012 & .027 & .052 \\ 120 & .0063 & .0089 & .018 & .040 & .077 \\ \hline \lambda_{\rm b} = 8.6 {\rm x} 10^{-10} \left[\left(\frac{{\rm S}}{.4} \right)^3 + 1 \right] \exp \left(16 \left(\frac{{\rm T} + 273}{398} \right) \right) \\ {\rm T} & = & {\rm Ambient Temperature (°C)} \end{array}$	30	.00017	.00024	.00050	.0011	.0021
$\begin{array}{rcrcrcrcrc} 60 & .00057 & .0008 & .0017 & .0036 & .0069 \\ 70 & .00085 & .0012 & .0025 & .0053 & .010 \\ 80 & .0013 & .0018 & .0037 & .008 & .016 \\ 90 & .0019 & .0027 & .0055 & .012 & .023 \\ 100 & .0028 & .0040 & .0083 & .018 & .035 \\ 110 & .0042 & .0059 & .012 & .027 & .052 \\ 120 & .0063 & .0089 & .018 & .040 & .077 \\ \hline \lambda_{b} = 8.6 \times 10^{-10} \bigg[\left(\frac{S}{.4} \right)^{3} + 1 \bigg] \exp \bigg(16 \left(\frac{T+273}{398} \right) \bigg) \\ T & = & \text{Ambient Temperature (°C)} \end{array}$	40	.00025	.00036	.00074	.0016	.0031
$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	50	.00038	.00053	.0011	.0024	.0046
$\begin{array}{rcrcrcrcrc} 80 & .0013 & .0018 & .0037 & .008 & .016 \\ 90 & .0019 & .0027 & .0055 & .012 & .023 \\ 100 & .0028 & .0040 & .0083 & .018 & .035 \\ 110 & .0042 & .0059 & .012 & .027 & .052 \\ 120 & .0063 & .0089 & .018 & .040 & .077 \\ \hline \lambda_{b} &= 8.6 \times 10^{-10} \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(16 \left(\frac{T+273}{398} \right) \right) \\ T & = & \text{Ambient Temperature (°C)} \end{array}$	60	.00057	.0008	.0017	.0036	.0069
$\begin{array}{rcrcrcrcr} 90 & .0019 & .0027 & .0055 & .012 & .023 \\ 100 & .0028 & .0040 & .0083 & .018 & .035 \\ 110 & .0042 & .0059 & .012 & .027 & .052 \\ 120 & .0063 & .0089 & .018 & .040 & .077 \\ \hline \lambda_{b} = 8.6 \times 10^{-10} \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(16 \left(\frac{T+273}{398} \right) \right) \\ T & = & \text{Ambient Temperature (°C)} \end{array}$	70	.00085	.0012	.0025	.0053	.010
$\begin{array}{rcrcrcr} 100 & .0028 & .0040 & .0083 & .018 & .035 \\ 110 & .0042 & .0059 & .012 & .027 & .052 \\ 120 & .0063 & .0089 & .018 & .040 & .077 \\ \hline \lambda_{b} = 8.6 \times 10^{-10} \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(16 \left(\frac{T+273}{398} \right) \right) \\ T & = & \text{Ambient Temperature (°C)} \end{array}$	80	.0013	.0018	.0037	.008	.016
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0019	.0027	.0055	.012	.023
$\frac{120}{\lambda_{b}} = 8.6 \times 10^{-10} \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(16 \left(\frac{T+273}{398} \right) \right)$ T = Ambient Temperature (°C)					.018	.035
$\lambda_{b} = 8.6 \times 10^{-10} \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(16 \left(\frac{T+273}{398} \right) \right)$ T = Ambient Temperature (°C)				.012	.027	.052
T = Ambient Temperature (°C)	120	.0063	.0089	.018	.040	.077
	$\lambda_{b} = 8.6 \times 10^{-10} \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(16 \left(\frac{T+273}{398} \right) \right)$					
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.						

Base Failure Rate - λ_b (T=150°C Max Rated)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
0 .00003 .00004 .00008 .00017 .00033 10 .00004 .00005 .00011 .00024 .00047 20 .00006 .00008 .00017 .00036 .00069 30 .00008 .00012 .00024 .00052 .0010 40 .00012 .00017 .00035 .00076 .0015 50 .00018 .00025 .00051 .0011 .0022 60 .00026 .00036 .00075 .0016 .0031 70 .00038 .00053 .0011 .0024 .0046 80 .00055 .00077 .0016 .0034 .0067					
0 .00003 .00004 .00008 .00017 .00033 10 .00004 .00005 .00011 .00024 .00047 20 .00006 .00008 .00017 .00036 .00069 30 .00008 .00012 .00024 .00052 .0010 40 .00012 .00017 .00035 .00076 .0015 50 .00018 .00025 .00051 .0011 .0022 60 .00026 .00036 .00075 .0016 .0031 70 .00038 .00053 .0011 .0024 .0046 80 .00055 .00077 .0016 .0034 .0067					
20 .00006 .00008 .00017 .00036 .00069 30 .00008 .0012 .00024 .00052 .0010 40 .00012 .00017 .00035 .00076 .0015 50 .00018 .00025 .00051 .0011 .0022 60 .00026 .00036 .00075 .0016 .0031 70 .00038 .00053 .0011 .0024 .0046 80 .00055 .00077 .0016 .0034 .0067					
30 .00008 .00012 .00024 .00052 .0010 40 .00012 .00017 .00035 .00076 .0015 50 .00018 .00025 .00051 .0011 .0022 60 .00026 .00036 .00075 .0016 .0031 70 .00038 .00053 .0011 .0024 .0046 80 .00055 .00077 .0016 .0034 .0067					
40 .00012 .00017 .00035 .00076 .0015 50 .00018 .00025 .00051 .0011 .0022 60 .00026 .00036 .00075 .0016 .0031 70 .00038 .00053 .0011 .0024 .0046 80 .00055 .00077 .0016 .0034 .0067					
50 .00018 .00025 .00051 .0011 .0022 60 .00026 .00036 .00075 .0016 .0031 70 .00038 .00053 .0011 .0024 .0046 80 .00055 .00077 .0016 .0034 .0067					
60 .00026 .00036 .00075 .0016 .0031 70 .00038 .00053 .0011 .0024 .0046 80 .00055 .00077 .0016 .0034 .0067					
70 .00038 .00053 .0011 .0024 .0046 80 .00055 .00077 .0016 .0034 .0067					
80 .00055 .00077 .0016 .0034 .0067					
90 .0008 .0011 .0023 .0050 .0098					
100 .0012 .0016 .0034 .0073 .014					
110 .0017 .0024 .0050 .011 .021					
120 .0025 .0035 .0073 .016 .030					
130 .0036 .0051 .011 .023 .044					
140 .0053 .0074 .015 .033 .065					
150 .0078 .011 .023 .049 .095					
$\lambda_{b} = 8.6 \times 10^{-10} \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(16 \left(\frac{T+273}{423} \right) \right)$					
T = Ambient Temperature (°C)					
S = Ratio of Operating to Rated Voltage					
Operating voltage is the sum of applied D.C. voltage					
and peak A.C. voltage.					

10.7 CAPACITORS, FIXED, MICA

Capacitance Factor - π_{CV}				
Capacitance, C (pF)	π _{CV}			
2	.50			
38	.75			
300	1.0			
2000	1.3			
8600	1.6			
29000	1.9			
84000	2.2			
$\pi_{\rm CV} = 0.45 {\rm C}^{.14}$				

• • • •

Environment Factor - π_E		
Environment	πE	
G _B	1.0	
G _F	2.0	
G _B G _F G _M	10	
NS	6.0	
NU	16	
AIC	5.0	
A _{IF}	7.0	
A _{UC}	22	
A _{UF}	28	
A _{RW}	23	
S _F	.50	
M _F	13	
ML	34	
ML CL	610	

Quality Factor - π_Q				
Quality	πQ			
Т	.010			
S	.030			
R	.10			
Ρ	.30			
Μ	1.0			
L	1.5			
MIL-C-5, Non-Est. Rel. Dipped	3.0			
MIL-C-5, Non-Est. Rel. Molded	6.0			
Lower	15			

4

10.8 CAPACITORS, FIXED, MICA, BUTTON

SPECIFICATION MIL-C-10950

STYLE CB

DESCRIPTION MICA, Button Style

 $\lambda_p = \lambda_b \pi_{CV} \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ _b (T = 85°C Max Rated) (Style CB50)					
T _A (℃)	.1		tress .5	.7	.9
0	.0067	.0094	.019	.042	.082
10	.0071	.0099	.021	.044	.086
20	.0076	.011	.022	.047	.092
30	.0082	.011	.024	.051	.10
40	.009	.013	.026	.056	.11
50	.010	.014	.029	.063	.12
60	.012	.016	.033	.072	.14
70	.013	.019	.039	.084	.16
80	.016	.023	.047	.10	.20
$\lambda_{b} = .0053 \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(1.2 \left(\frac{T+273}{358} \right)^{6.3} \right)$					
T – Ambient Temperature (°C)					
S = Ratio of Operating to Rated Voltage					
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.					

			tress	_	_
T _A (℃)	.1	.3	.5	.7	.9
0	.0058	.0081	.017	.036	.071
10	.0059	.0083	.017	.037	.072
20	.0061	.0085	.018	.038	.074
30	.0062	.0087	.018	.039	.0 76
40	.0064	.009	.019	.040	.07 9
50	.0067	.0094	.019	.042	.082
60	.0070	.0098	.020	.044	.086
70	.0074	.010	.022	.046	.090
80	.0079	.011	.023	.049	.096
90	.0085	.012	.025	.053	.10
100	.0093	.013	.027	.058	.11
110	.010	.014	.03	.064	.12
120	.011	.016	.033	.072	.14
130	.013	.018	.038	.082	.16
140	.015	.021	.044	.095	.18
150	.018	.025	.052	.11	.22

Base Failure Rate - λ_b

$$\lambda_{b} = .0053 \left[\left(\frac{5}{.4} \right)^{5} + 1 \right] \exp \left(1.2 \left(\frac{1+273}{423} \right)^{5.4} \right]$$

Ambient Temperature (°C) Т

Ratio of Operating to Rated Voltage S

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.8 CAPACITORS, FIXED, MICA, BUTTON

Quality Factor - π_Q		
Quality	πQ	
MIL-C-10950	5.0	
Lower	15	

Capacitance Factor - π_{CV}				
Capacitance, C (pF)	^π CV			
8	.50			
50	.76			
160	1.0			
500	1.3			
1200	1.6			
2600	1.9			
5000	2.2			
$\pi_{\rm CV}$ = .31C ^{0.23}				

Environment Factor - π_E		
Environment	π _E	
G _B	1.0	
G _F	2.0	
G _F G _M	10	
NS	5.0	
NU	16	
AIC	5.0	
A _{IC} A _{IF}	7.0	
AUC	22	
A _{UF}	28	
A _{RW}	23	
S _F	.50	
M _F	13	
ML	34	
Mլ Շլ	610	

1

10.9 CAPACITORS, FIXED, GLASS

SPECIFICATION	
MIL-C-11272	
MIL-C-23269	

STYLE CY CYR

DESCRIPTION Glass Glass, Established Reliability

$\lambda_p = \lambda_b \pi_{CV} \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ _b							
(T=125°C Max Rated)							
(All MIL-C-23296 and MIL-C-11272 Temp. Range C) Stress							
T _A (℃)	.1	.3	.5	.7	.9		
о	.00005	.00005	.00010	.00023	.00055		
10	.00007	.00008	.00014	.00035	.00083		
20	.00011	.00012	.00022	.00052	.0012		
30	.00016	.00018	.00032	.00078	.0018		
40	.00024	.00027	.00048	.0012	.0028		
50	.00036	.00041	.00072	.0017	.0041		
60	.00054	.00061	.0011	.0026	.0062		
70	.0008	.00091	.0016	.0039	.0092		
80	.0012	.0014	.0024	.0058	.014		
90	.0018	.0020	.0036	.0087	.021		
100	.0027	.0030	.0054	.013	.031		
110	.0040	.0045	.0080	.019	.046		
120	.0060	.0068	.012	.029	.069		

$$\lambda_{b} = 8.25 \times 10^{-10} \left[\left(\frac{S}{.5} \right)^{4} + 1 \right] \exp \left(16 \left(\frac{T+273}{398} \right) \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b (T = 200°C Max Rated) (MIL-C-11272 Temp. Range D)

		-11212	епр. на		
T _A (℃)	.1	.3	Stress .5	.7	.9
0	.00001	.00001	.00002	.00004	.00010
10	.00001	.00001	.00002	.00006	.00014
20	.00002	.00002	.00003	.00008	.00019
30	.00002	.00003	.00005	.00011	.00027
40	.00003	.00004	.00007	.00016	.00038
50	.00005	.00005	.00009	.00022	.00053
60	.00006	.00007	.00013	.00031	.00074
70	.00009	.00010	.00018	.00044	.0010
80	.00013	.00014	.00025	.00061	.0015
90	.00018	.00020	.00035	.00086	.0020
100	.00025	.00028	.00050	.0012	.0029
110	.00035	.00039	.00070	.0017	.0040
120	.00049	.00055	.00098	.0024	.0056
130	.00069	.00078	.0014	.0033	.0079
140	.00096	.0011	.0019	.0047	.011
150	.0014	.0015	.0027	.0065	.016
160	.0019	.0021	.0038	.0092	.022
170	.0027	.0030	.0053	.013	.031
180	.0037	.0042	.0075	.018	.043
190	.0052	.0059	.010	.025	.060
200	.0073	.0083	.015	.035	.084

$$\lambda_{b} = 8.25 \times 10^{-10} \left[\left(\frac{S}{.5} \right)^{4} + 1 \right] \exp \left(16 \left(\frac{T+273}{473} \right) \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.9 CAPACITORS, FIXED, GLASS

Capacitance Factor - π_{CV}				
Capacitance, C (pF)	πCV			
1	.62			
4	.75			
30	1.0			
200	1.3			
900	1.6			
3000	1.9			
8500	2.2			
$\pi_{\rm CV} = 0.62 {\rm C}^{0.14}$				

	E
Environment	π _E
G _B	1.0
G _F G _M	2.0
G _M	10
NS	6.0
NU	16
AIC	5.0
А _Ю А _{IF}	7.0
AUC	22
A _{UF}	28
A _{RW}	23
S _F	.50
M _F	13
ML	34
ML CL	610

Environment Factor - π_{E}

Quality Factor - π_Q				
Quality	πQ			
S	.030			
R	.10			
Р	.30			
м	1.0			
L	3.0			
MIL-C-11272, Non-Est. Rel.	3.0			
Lower	10			

U E

10.10 CAPACITORS, FIXED, CERAMIC, GENERAL PURPOSE

SPECIFICATION
MIL-C-11015
MIL-C-39014

STYLE CK CKR

DESCRIPTION Ceramic, General Purpose Ceramic, General Purpose, Est. Rel.

$\lambda_p = \lambda_b \pi_{CV} \pi_Q \pi_E$ Failures/10⁶ Hours

1

Base Failure Rate - λ _b (T = 85°C Max Rated) (MIL-C-39014 Sty les CKR13, 48, 64, 72; MIL-C-11015 Type A Rated Temperature)						
		S	ress			
T _A (℃)	.1	.3	.5	.7	.9	
0	.00067	.0013	.0036	.0088	.018	
10	.00069	.0013	.0037	.0091	.019	
20	.00071	.0014	.0038	.0093	.019	
30	.00073	.0014	.0039	.0096	.020	
40	.00075	.0014	.004	.0099	.020	
50	.00077	.0015	.0042	.010	.021	
60	.00079	.0015	.0043	.010	.021	
70	.00081	.0016	.0044	.011	.022	
80	.00083	.0016	.0045	.011	.023	
$\lambda_{\rm b} = .0003 \left[\left(\frac{\rm S}{.3} \right)^3 + 1 \right] \exp \left(\frac{\rm T+273}{358} \right)$						
T = Ambient Temperature (°C) S = Ratio of Operating to Rated Voltage						
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.						

Base Failure Rate - λ _b
(T = 125°C Max Rated)
(MIL-C-39014 Styles CKR05-12, 14-19, 73, 74;
MIL -C-11015 Type B Rated Temperature)

MIL-C-ITUTS Type B Hated Temperature)					
	1	S	tress		
T _A (℃)	.1	.3	.5	.7	.9
0	.00062	.0012	.0033	.0082	.017
10	.00063	.0012	.0034	.0084	.017
20	.00065	.0013	.0035	.0086	.018
30	.00067	.0013	.0036	.0088	.018
40	.00068	.0013	.0037	.0090	.018
50	.00070	.0014	.0038	.0093	.019
60	.00072	.0014	.0039	.0095	.019
70	.00074	.0014	.0040	.0097	.020
80	.00076	.0015	.0041	.010	.020
90	.00077	.0015	.0042	.010	.021
100	.00079	.0015	.0043	.010	.021
110	.00081	.0016	.0044	.011	.022
120	.00084	.0016	.0045	.011	.023
λ _b	.0003	$\left(\frac{s}{.3}\right)^3$ +	1] exp	$\left(\frac{T+273}{398}\right)$	
T = Ambient Temperature (°C) S = Ratio of Operating to Rated Voltage					
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.					

Base Failure Rate - λ _b
(T =150°C Max Rated)
AIL-C-11015 Type C Rated Temperature)

(MIL-C-11015 Type C Rated Temperature) Stress					
T _A (℃)	.1	.3	.5	.7	.9
0	.00059	.0011	.0032	.0078	.016
10	.00061	.0012	.0033	.008	.016
20	.00062	.0012	.0034	.0082	.017
30	.00064	.0012	.0035	.0084	.017
40	.00065	.0013	.0035	.0086	.018
50	.00067	.0013	.0036	.0088	.018
60	.00068	.0013	.0037	.009	.018
70	.00070	.0013	.0038	.0092	.019
80	.00072	.0014	.0039	.0095	.019
90	.00073	.0014	.0040	.0097	.020
100	.00075	.0014	.0041	.0099	.020
110	.00077	.0015	.0042	.010	.021
120	.00079	.0015	.0043	.010	.021
130	.00081	.0016	.0044	.011	.022
140	.00083	.0016	.0045	.011	.022
150	.00085	.0016	.0046	.011	.023

$$\lambda_{b} = .0003 \left[\left(\frac{S}{.3} \right)^{3} + 1 \right] \exp \left(\frac{T+273}{423} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

NOTE: The rated temperature designation (type A, B, or C) is shown in the part number, e.g., CKG1AW22M).

10.10 CAPACITORS, FIXED, CERAMIC, GENERAL PURPOSE

Capacitance Factor - π_{CV}			
Capacitance, C (pF)	π _{CV}		
6.0	.50		
240	.75		
3300	1.0		
36,000	1.3		
240,000	1.6		
1,100,000	1.9		
4,300,000	2.2		
$\pi_{\rm CV} = .41 {\rm C}^{0.11}$			

Elivioliniani actor - "E		
Environment	^π Ε	
G _B	1.0	
G _B G _F	2.0	
G _M	9.0	
NS	5.0	
NU	15	
AIC	4.0	
A _{IF}	4.0	
AUC	8.0	
AUF	12	
A _{RW}	20	
S _F	.40	
M _F	13	
ML CL	34	
۲	610	

Quality Factor - π_Q			
Quality	^π Q		
S	.030		
R	.10		
Р	.30		
Μ	1.0		
L	3.0		
MIL-C-11015, Non-Est. Rel.	3.0		
Lower	10		

. •

Environment Factor - π_{E}

10.11 CAPACITORS, FIXED, CERAMIC, TEMPERATURE COMPENSATING AND CHIP

SPECIFICATION	STYLE
MIL-C-20	CCR and C

MIL-C-55681

20

CDR

DESCRIPTION Ceramic, Temperature Compensating, Est. and Non Est. Rel. Ceramic, Chip, Est. Rel.

 $\lambda_p = \lambda_b \pi_{CV} \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ _b					
(MIL-C-)	(1 20 Styles (⁻ = 85°C M CC 20, 25,	ax Rated) 30. 32. 35	5. 45. 85.	95-97)
			tress	<u>,,</u>	
T _A (°C)	.1	.3	.5	.7	.9
0	.00015	.00028	.00080	.0019	.0040
10	.00022	.00042	.0012	.0029	.0059
20	.00033	.00063	.0018	.0043	.0088
30	.00049	.00094	.0026	.0064	.013
40	.00073	.0014	.0039	.0096	.020
50	.0011	.0021	.0059	.014	.029
60	.0016	.0031	.0088	.021	.044
70	.0024	.0046	.013	.032	.065
80	.0036	.0069	.019	.047	.097
$\lambda_{b} = 2.6 \times 10^{-9} \left[\left(\frac{S}{.3} \right)^{3} + 1 \right] \exp \left(14.3 \left(\frac{T+273}{358} \right) \right)$					
T = Ambient Temperature (*C) S = Ratio of Operating to Rated Voltage					
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.					

Base Failure Rate - λb (T = 125°C Max Rated) (MIL-C-20 Styles CC 5-9,13-19, 21, 22, 26, 27, 31, 33, 36, 37, 47, 50-57, 75-79, 81-83, CCR 05-09,13-19, 54-57, 75-79, 81-83, 90; MIL-C-55681 All CDR Styles)

		S	tress		
T _A (°C)	.1	.3	.5	.7	.9
0	.00005	.00009	.00027	.00065	.0013
10	.00007	.00014	.00038	.00093	.0019
20	.00010	.00019	.00055	.0013	.0027
30	.00014	.00028	.00078	.0019	.0039
40	.00021	.00040	.0011	.0027	.0056
50	.00030	.00057	.0016	.0039	.008
60	.00042	.00082	.0023	.0056	.011
70	.00061	.0012	.0033	.008	.016
80	.00087	.0017	.0047	.011	.023
90	.0012	.0024	.0068	.016	.034
100	.0018	.0034	.0097	.024	.048
110	.0026	.0049	.014	.034	.069
120	.0037	.0071	.020	.048	.099
λ _b = 2.6	x 10 ⁻⁹ [($\left(\frac{s}{.3}\right)^3 + 1$] exp(14	$3\left(\frac{T+27}{398}\right)$	<u>3</u>))
 T = Ambient Temperature (°C) S = Ratio of Operating to Rated Voltage 					
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.					

Capacitance Factor - π_{CV}

	00
Capacitance, C (pF)	^π CV
1	.59
7	.75
81	1.0
720	1.3
4,100	1.6
17,000	1.9
58,000	2.2
$\pi_{\rm CV} = .590^{0.12}$	
νCV = .39C	

Quality Factor - π_Q Quality πο S .030 R .10 .30 Ρ М 1.0 Non-Est. Rel. 3.0 Lower 10

Environment racior - nE		
Environment	πE	
G _B	1.0	
G _F	2.0	
G _F G _M N _S	10	
NS	5.0	
NU	17	
AIC	4.0	
A _{IF}	8.0	
AUC	16	
AUF	35	
A _{RW}	24	
S _F	.50	
M _F	13	
ML	34	
ML CL	610	

Environment Factor - π_{r}

10.12 CAPACITORS, FIXED, ELECTROLYTIC, TANTALUM, SOLID

SPECIFICATION MIL-C-39003 STYLE CSR

. . .

DESCRIPTION Tantalum Electrolytic (Solid), Est. Rel.

 $\lambda_p = \lambda_b \pi_{CV} \pi_{SR} \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ _b					
		S	tress		
T _A (℃)	.1	.3	.5	.7	.9
0	.0042	.0058	.012	.026	.051
10	.0043	.0060	.012	.027	.052
20	.0045	.0063	.013	.028	.055
30	.0048	.0067	.014	.030	.058
40	.0051	.0072	.015	.032	.063
50	.0057	.0079	.016	.035	.069
60	.0064	.009	.019	.040	.078
70	.0075	.011	.022	.047	.092
80	.0092	.013	.027	.058	.11
90	.012	.017	.034	.074	.14
100	.016	.023	.047	.10	
110	.024	.034	.07	.15	
120	.039	.054	.11	.24	
$\lambda_{b} = .00375 \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(2.6 \left(\frac{T+273}{398} \right)^{9} \right)$					
T = Ambient Temperature (°C) S = Ratio of Operating to Rated Voltage					

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Capacitance Factor - π_{CV}			
Capacitance, C (μF)	πcv		
.003 .091 1.0 8.9 50 210 710	0.5 .75 1.0 1.3 1.6 1.9 2.2		
$\pi_{\rm CV} = 1.0 {\rm C}^{0.12}$			

Quality Factor - π_{O}

	<u> </u>
Quality	πQ
D	0.0010
C	0.010
S	0.030
В	0.030
R	0.10
Р	0.30
M	1.0
L	1.5
Lower	10

Series Resistance Factor - π_{SR}			
Circuit Resistance, CR (ohms/volt)	^π SR		
>0.8	.066		
>0.6 to 0.8	.10		
>0.4 to 0.6	.13		
>0.2 to 0.4	.20		
>0.1 to 0.2	.27		
0 to 0.1	.33		
CR = Eff. Res. Between Cap. and Pwr. Supply Voltage Applied to Capacitor			

Environment Factor - π_{E}

	<u> </u>
Environment	^π E
G _B	1.0
G _B G _F	2.0
G _M	8.0
NS	5.0
NU	14
AIC	4.0
A _{IC} A _{IF}	5.0
AUC	12
AUF	20
A _{RW}	24
S _F	.40
M _F	11
ML	29
M _L C _L	530

10-21

10.13 CAPACITORS, FIXED, ELECTROLYTIC, TANTALUM, NON-SOLID

SPECIFICATION	STYLE
MIL-C-3965	CL
MIL-C-39006	CLR

DESCRIPTION Tantalum, Electrolytic (Non-Solid) Tantalum, Electrolytic (Non-Solid), Est. Rel.

> Base Failure Rate - λ_b (T = 175°C Max Rated)

. . . .

$\lambda_p = \lambda_b \pi_C \sqrt{\pi_C} \pi_Q \pi_E$ Failures/10⁶ Hours

	Base Failure Rate - λ _b						
	(T = 85°C Max Rated) (MIL-C-3965 Styles CL24-27, 34-37)						
		S	ress				
T _A (℃)	.1	.3	.5	.7	.9		
0	.0021	.0029	.0061	.013	.026		
10	.0023	.0032	.0067	.014	.028		
20	.0026	.0036	.0075	.016	.031		
30	.0030	.0042	.0087	.019	.036		
40	.0036	.0051	.011	.023	.044		
50	.0047	.0066	.014	.029	.057		
60	.0065	.0091	.019	.041	.079		
70	.0098	.014	.029	.062	.12		
80	.017	.023	.048	.10	.20		
$\lambda_{b} = .00165 \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(2.6 \left(\frac{T+273}{358} \right)^{9.0} \right)$							
T = Ambient Temperature (°C) S = Ratio of Operating to Rated Voltage							
	rating voltaç peak A.C. v		um of appl	ied D.C. v	oltage		

Base Failure Rate - λ_b (T = 125°C Max Rated) (MIL-C-3965 Styles CL20-23, 30-33, 40-43, 46-56, 64-67, 70-73; and all MIL-C-39006 Styles)

	07,70-73,				
		S	ress		
T _A (℃)	.1	.3	.5	.7	.9
	.0018	.0026	.0053	.011	.022
10	.0019	.0026	.0055	.012	.022
20	.0020	.0028	.0057	.012	.023
30	.0021	.0029	.0061	.013	.026
40	.0023	.0032	.0066	.014	.028
50	.0025	.0035	.0072	.016	.030
60	.0028	.0040	.0082	.018	.034
70	.0033	.0046	.0096	.021	.040
80	.0041	.0057	.012	.025	.049
90	.0052	.0073	.015	.033	.064
100	.0071	.010	.021	.045	
110	.011	.015	.031	.066	
120	.017	.013	.050	.11	
120	.017	.024	.030		
λ _b = .001	$165\left[\left(\frac{S}{.4}\right)^{2}\right]$	3 + 1]ex	p(2.6 ($\frac{1+273}{398}$	9.0
T					
	ating voltag beak A.C. v		um of appli	ed D.C. v	oltage

÷

(MIL-C-3965 Styles CL10, 13, 14, 16-18)					
T _A (°C)	.1	.3 .3	ress .5	.7	.9
0	.0017	.0024	.0050	.011	.021
10	.0017	.0024	.0051	.011	.021
20	.0018	.0025	.0052	.011	.022
30	.0018	.0025	.0053	.011	.022
40	.0019	.0026	.0054	.012	.023
50	.0019	.0027	.0056	.012	.023
60	.002	.0028	.0058	.013	.024
70	.0021	.0030	.0062	.013	.02L
80	.0023	.0032	.0066	.014	.028
90	.0025	.0035	.0072	.016	.030
100	.0028	.0039	.0080	.017	.034
110	.0032	.0044	.0092	.020	.039
120	.0037	.0052	.011	.023	
130	.0046	.0064	.013	.029	
140	.0059	.0082	.017	.037	
150	.0079	.011	.023	.049	
160	.011	.016	.033	.071	
170	.018	.025	.051		
$\lambda_{b} \approx .00165 \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(2.6 \left(\frac{T+273}{448} \right)^{9.0} \right)$					

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.13 CAPACITORS, FIXED, ELECTROLYTIC, TANTALUM, NON-SOLID

Capacitance Factor - π_{CV}				
Capacitance, C (µF)	πcv			
.091 20 1100	.70 1.0 1.3			
π _{CV} = .82C ^{0.066}				

Construct	ion F	actor	- π

Construction Type	π _C			
Slug, All Tantalum Foil, Hermetic * Slug, Hermetic * Foil, Non-Hermetic * Slug, Non-Hermetic *	.30 1.0 2.0 2.5 3.0			
*Type of Seal Identified as Follows:				
1) MIL-C-3965 (CL) - Note Last Letter in Part Number: G - Hermetic E - Non-Hermetic				
Example: CL10BC700TPG is Hermetic				
 MIL-C-39006 (CLR) - Consult Individual Part Specification Sheet (slash sheet) 				
NOTE: Foil Types - CL 20-25, 30-33, 40, 4 CLR 25, 27, 35, 37, 53				
Slug Types - CL 10, 13, 14, 16, 17 64-66, 67 CLR 10, 14, 17, 65, 6				
All Tantalum - CL 26, 27, 34-37, 42, CLR 79	43, 46-49			

L_____

Quality Factor - π_Q					
Quality	πQ				
S	.030				
R	.10				
Р	.30				
м	1.0				
L	1.5				
MIL-C-3965, Non-Est. Rel.	3.0				
Lower	10				

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _M	10
NS	6.0
NU	16
A _{IC} A _{IF} A _{UC} A _{UF}	4.0
A _{IF}	8.0
AUC	14
A _{UF}	30
A _{RW}	23
S _F	.50
M _F	13
ML CL	34
СL	610

_____1

- 1

10.14 CAPACITORS, FIXED, ELECTROLYTIC, ALUMINUM

SPECIFICATION MIL-C-39018

STYLE CUR and CU DESCRIPTION Electrolytic, Aluminum Oxide, Est. Rel. and Non-Est. Rel.

 $\lambda_p = \lambda_b \pi_{CV} \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b (T = 85°C Max Rated) (MIL-C-39018 Style 71) Stress T_A (°C) .3 .7 .9 .1 .5 .0095 .011 .019 .035 .064 0 10 .012 .015 .024 .046 .084 .020 .033 .062 .11 20 .017 30 .023 .028 .046 .087 .16 .068 .13 .23 40 .034 .042 .36 .065 .20 50 .054 .11 60 .089 .18 .33 .60 .11 70 .16 .19 .31 .58 1.1 .29 .58 1.1 2.0 80 .35 5 <u>T+273</u> з λ_b = .00254 exp(5.09 358 Т Ambient Temperature (°C) S Ratio of Operating to Rated Voltage Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b (T = 105°C Max Rated) (MIL-C-39018 Styles 16 and 17)

			Stress			
T _A (℃)	.1	.3	.5	.7	.9	
0	.0070	.0084	.014	.026	.047	
10	.0085	.010	.017	.031	.057	
20	.011	.013	.021	.040	.072	
30	.014	.017	.027	.051	.094	
40	.019	.022	.037	.069	.13	
50	.026	.031	.052	.097	.18	
60	.038	.046	.076	.14	.26	
70	.059	.071	.12	.22	.40	
80	.095	.11	.19	.35	.64	
90	.16	.20	.32	.61	1.1	
100	.30	.36	.59	1.1	2.0	
$\lambda_{b} = .00254 \left[\left(\frac{S}{.5} \right)^{3} + 1 \right] \exp \left(5.09 \left(\frac{T+273}{378} \right)^{5} \right)$						
T = Ambient Temperature (°C)						
S Ratio of Operating to Rated Voltage						
	Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.					

n u

	Base Failure Rate - λ _b					
7 A 11 M	(T = 125°C Max Rated) (All MIL-C-39018 Styles Except 71, 16 and 17)					
			tress	/1, 10 u		
T _A (℃)	.1	.3	.5	.7	.9	
0	.0055	.0067	.011	.021	.038	
10	.0065	.0078	.013	.024	.044	
20	.0077	.0093	.015	.029	.052	
30	.0094	.011	.019	.035	.064	
40	.012	.014	.023	.044	.080.	
50	.015	.019	.030	.057	.10	
60	.021	.025	.041	.077	.14	
70	.029	.035	.057	.11	.20	
80	.042	.050	.083	.16	.28	
9 0	.064	.077	.13	.24	.43	
100	.10	.12	.20	.38		
110	.17	.21	.34	.63		
120	.30	.37	.60	1.1		

$$\lambda_{b} = .00254 \left[\left(\frac{S}{.5} \right)^{3} + 1 \right] \exp \left(5.09 \left(\frac{T+273}{398} \right)^{5} \right)$$

T = Ambient Temperature (°C)

11-11-1-1-1

S

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10-24

10.14 CA	PACITORS,	FIXED,	ELECTROLYTIC,	ALUMINUM

1

Capacitance Factor - π_{CV}			
Capacitance, C (μF)	πCV		
2.5	.40		
55	.70		
400	1.0		
1700	1.3		
5500	1.6		
14,000	1.9		
32,000	2.2		
65,000	2.5		
120,000	2.8		
$\pi_{\rm CV} = .34 {\rm C}^{0.18}$			

Environment Factor - π _E		
Environment	πE	
G _B	1.0	
G _F	2.0	
G _M	12	
NS	6.0	
NU	17	
AIC	10	
A _{IC} A _{IF}	12	
AUC	28	
AUF	35	
A _{RW}	27	
S _F	.50	
M _F	14	
M _L C _L	38	
CL	690	

Quality Factor - π_Q

Quality	πQ
S	.030
R	.10
Р	.30
м	1.0
Non-Est. Rel.	3.0
Lower	10

10.15 CAPACITORS, FIXED, ELECTROLYTIC (DRY), ALUMINUM

SPECIFICATION MIL-C-62 STYLE CE DESCRIPTION Aluminum, Dry Electrolyte, Polarized

$\lambda_{p} = \lambda_{b} \pi_{CV} \pi_{Q} \pi_{E}$ Failures/10⁶ Hours

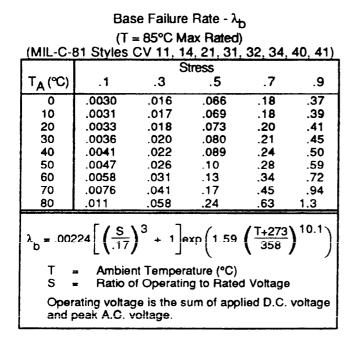
(T = 85°C Max Rated)					
			ress	_	
T _A (℃)	.1	.3	.5	.7	.9
0 10 20 30 40 50 60 70 80	.0064 .0078 .0099 .013 .018 .026 .041 .068 .120	.0074 .009 .011 .015 .021 .030 .047 .078 .14	.011 .014 .017 .023 .031 .046 .071 .12 .21	.020 .024 .030 .040 .055 .08 .12 .21 .37	.034 .042 .053 .070 .096 .14 .22 .36 .65
λ _b = .002	$28\left[\left(\frac{S}{.55}\right)\right]$	³ + 1]ex	p (4.09	$\left(\frac{T+273}{358}\right)$	^{5.9})
T - Ambient Temperature (°C)					
S - Ratio of Operating to Rated Voltage					
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.					

Base	Failure	Rate	- λ _b	
		-		

Quality	πQ
MIL-SPEC	3.0
Lower	10

Quality Factor - π_{o}

Environment Factor - π_E			
Environment	π _E		
G _B	1.0		
G _F	2.0		
G _F G _M NS	12		
NS	6.0		
NU	17		
AIC	10		
AIE	12		
AUC	28		
AUF	35		
A _{RW}	27		
S _F	.50		
M _F	14		
ML	38		
cL	690		


Capacitance	Factor	-	ποι
Capacitatice	acioi		MCV/

Capacitance, C (µF)	^π cv		
3.2 62 400 1600 4800 12,000 26,000 50,000 91,000	.40 .70 1.0 1.3 1.6 1.9 2.2 2.5 2.8		
π _{CV} = .32C ^{0.19}			

10.16 CAPACITORS, VARIABLE, CERAMIC

SPECIFICATION MIL-C-81 STYLE CV DESCRIPTION Variable, Ceramic

$$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm Q} \pi_{\rm E}$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b (T = 125°C Max Rated) (MII -C-81 Styles CV 35, 36)

(IVIL-0-01 Styles CV 35, 30)					
		5	tress		
⊺ _Α (℃)	.1	.3	.5	.7	.9
Ō	.0028	.015	.061	.16	.35
10	.0028	.015	.062	.17	.35
20	.0029	.016	.064	.17	.36
30	.0030	.016	.066	.18	.37
40	.0031	.017	.068	.18	.39
50	.0033	.018	.072	.19	.41
60	.0035	.019	.077	.21	.44
70	.0038	.021	.084	.23	.48
80	.0043	.023	.095	.25	.54
90	.0050	.027	.11	.30	.63
100	.0062	.033	.14	.36	.76
110	.0079	.043	.17	.47	.98
120	.011	.059	.24	.64	1.4
$\lambda_{b} = .00224 \left[\left(\frac{S}{.17} \right)^{3} + 1 \right] \exp \left(1.59 \left(\frac{T+273}{398} \right)^{10.1} \right)$ T = Ambient Temperature (°C) S = Ratio of Operating to Rated Voltage Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.					

Quality Factor - π_Q			
Quality π_Q			
MIL-SPEC	4		
Lower	20		

Environment Factor - π_{\Box}

	<u>"E</u>
Environment	πE
G _B	1.0
Ĝ _F	3.0
GM	13
G _F G _M NS	8.0
NU	24
AIC	6.0
Α _{ΙC} Α _{IF}	10
AUC	37
AUF	70
ARW	36
S _F	.40
MF	20
ML	52
CL	950

10.17 CAPACITORS, VARIABLE, PISTON TYPE

SPECIFICATION MIL-C-14409 STYLE PC DESCRIPTION

Variable, Piston Type, Tubular Trimmer

 $\lambda_p = \lambda_b \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ _b						
	(T = 125°C Max Rated) (MIL-C-14409 Styles G, H, J, L, T)					
	(MIL-U-			<u>, L, I)</u>		
T _A (°C)	.1	.3	Stress .5	.7	.9	
0	.0030	.0051	.013	.031	.063	
10	.0041	.0070	.018	.042	.085	
20	.0055	.0094	.024	.057	.11	
30	.0075	.013	.033	.077	.16	
40	.010	.017	.044	.10	.21	
50	.014	.024	.060	.14	.29	
60	.019	.032	.082	.19	.39	
70	.025	.043	.11	.26	.53	
80	.034	.059	.15	.35	.71	
90	.047	.079	.20	.48	.96	
100	.063	.11	.27	.65	1.3	
110	.086	.15	.37	.88	1.8	
120	.12	.20	.51	1.2	2.4	
$\lambda_{\rm b} = 7.3 \times 10^{-7} \left[\left(\frac{\rm S}{.33} \right)^3 + 1 \right] \exp \left(12.1 \left(\frac{\rm T+273}{398} \right) \right)$						
ј т :	T = Ambient Temperature (°C)					
l s	 Ratio 	of Operatin	g to Rate			
Oper	ating volta	ge is the su	im of app	lied D.Č.	voltage	
	beak A.C.				-	

Quality	Factor	- π _Q
	_	_

Quality	π _Q
MIL-SPEC	3
Lower	10

Environment Factor - π_{E}

	E E
Environment	π _E
G _B	1.0
G _F	3.0
G _F G _M	12
NS	7.0
NU	18
A _{IC}	3.0
A _{IC} A _{IF}	4.0
AUC	20
AUF	30
A _{RW}	32
S _F	.50
M _F	18
ML	46
ĊĹ	830

(T = 150°C Max Rated) (MIL-C-14409 Characteristic Q)					
	S	stress			
.1	.3	.5	.7		
.0019	.0032	.0081	.019		
.0025	.0042	.011	.025		
.0033	.0056	.014	.034		
.0044	.0074	.019	.045		
0058	0000	025	060		

Base Failure Rate - λ_b

20 .068 30 .09 40 .0099 .12 .0058 .025 .060 50 .0077 .013 .034 .079 .16 60 .010 .018 .045 .11 .21 70 .023 .060 .014 .28 .14 80 .018 .031 .079 .19 .38 90 .024 .041 .11 .25 .50 100 .032 .055 .14 .33 .67 110 .043 .073 .19 .44 .89 .057 120 .097 .25 .59 1.2 130 .076 .13 .33 .78 1.6 .10 140 .17 .44 1.0 2.1 150 .13 .23 .59 1.4 2.8 S \ 3 $\lambda_{\rm b} = 7.3 \times 10^{-7}$ T+273 exp(12.1 + 1 .33 423 Ambient Temperature (°C) Т S Ratio of Operating to Rated Voltage × Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10-28

TC

0

10

9

.038

.051

10.18 CAPACITORS, VARIABLE, AIR TRIMMER

SPECIFICATION MIL-C-92 STYLE CT DESCRIPTION Variable, Air Trimmer

$\lambda_p = \lambda_b \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ _b (T = 85°C Max Rated)					
T _A (℃)	.1		Stress .5	.7	.9
0	.0074	.013	.032	.076	.15
10	.010	.017	.044	.10	.21
20	.014	.023	.059	.14	.28
30	.018	.031	.08	.19	.38
40	.025	.042	.11	.26	.52
50	.034	.057	.15	.35	.70
60	.046	.078	.20	.47	.94
70	.062	.10	.27	.63	1.3
80	.083	.14	.36	.85	1.7

 $\lambda_{\rm b} = 1.92 \times 10^{-6} \left[\left(\frac{\rm S}{.33} \right)^3 + 1 \right] \exp \left(10.8 \left(\frac{\rm T+273}{358} \right)^3 \right)$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Quality	Factor	-	π_{C}
---------	--------	---	-----------

¥	
Quality	πQ
MIL-SPEC	5
Lower	20
	1

Environment Factor - π_{r}

Environment	^π E			
G _B	1.0			
G _F	3.0			
G _F G _M	13			
NS	8.0			
NU	24			
A _{IC}	6.0			
A _{IF}	10			
AUC	37			
A _{UF}	70			
A _{RW}	36			
S _F	.50			
M _F	20			
ML	52			
СL	950			

10.19 CAPACITORS, VARIABLE AND FIXED, GAS OR VACUUM

SPECIFICATION MIL-C-23183

STYLE CG

DESCRIPTION Gas or Vacuum Dielectric, Fixed and Variable, Ceramic or **Glass Envelope**

 $\lambda_p = \lambda_b \pi_{CF} \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ _b (T = 85°C Max Rated) (Styles CG 20, 21, 30, 31, 32, 40-44, 51, 60-64, 67)					
тъс	.1	.3	Stress .5	.7	.9
0 10 20 30 40 50 60 70 80	.015 .016 .017 .018 .020 .024 .029 .038 .054	.081 .084 .090 .098 .11 .13 .16 .20 .29	.33 .34 .37 .40 .45 .52 .64 .83 1.2	.88 .92 .98 1.1 1.2 1.4 1.7 2.2 3.2	1.9 1.9 2.1 2.2 2.5 2.9 3.6 4.7 6.6
λ _b = .	0112 $\left[\left(\frac{9}{11} \right) \right]$	$\left(\frac{3}{7}\right)^3 + 1$] exp(1.5	$9\left(\frac{T+273}{358}\right)$	<u>3</u>)10.1)
T S			erature (°C ting to Rate)
	erating volta		sum of ap	plied D.C.	voltage
	(T	= 100°C Styles C	e Rate - λ Max Rate <u>G 65, 66)</u> itress	0	······
T℃	.1	.3	.5	.7	.9
0 10 20 30 40 50 60 70 80 90 100	.014 .015 .016 .018 .020 .022 .027 .034 .045 .066	.078 .080 .084 .088 .095 .11 .12 .14 .18 .24 .36	.30 .33 .34 .36 .39 .43 .49 .59 .74 .99 1.5	.85 .87 .91 .96 1.0 1.2 1.3 1.6 2.0 2.7 3.9	1.8 1.9 2.0 2.2 2.4 2.8 3.3 4.2 5.6 8.2
$\lambda_{b} = .0112 \left[\left(\frac{S}{.17} \right)^{3} + 1 \right] \exp \left(1.59 \left(\frac{T+273}{373} \right)^{10.1} \right)$					
T = Ambient Temperature (°C) S = Ratio of Operating to Rated Voltage					
Ope and	rating volta peak A.C.	ge is the voltage.	sum of app	blied D.C.	voltage
10-30					

Base Failure Rate - λ _b (T = 125°C Max Rated) (Style CG 50)					
-			Stress	_	
™℃	.1	.3	.5	.7	.9
0	.014	.075	.31	.82	1.7
10	.014	.077	.31	.83	1.8
20	.014	.078	.32	.85	1.8
30	.015	.08	.33	.88	1.9
40	.016	.084	.34	.91	1.9
50	.016	.088	.36	.96	2.0
60	.018	.095	.39	1.0	2.2
70	.019	.10	.42	1.1	2.4
80	.022	.12	.48	1.3	2.7
90	.025	.14	.55	1.5	3.1
100	.031	.17	.68	1.8	3.8
110	.04	.21	.87	2.3	4.9
120	.055	.29	1.2	3.2	6.8
$\lambda_{b} = .0112 \left[\left(\frac{S}{.17} \right)^{3} + 1 \right] \exp \left(1.59 \left(\frac{T+273}{398} \right)^{10.1} \right)$					

Т S

Ambient Temperature (°C) Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

and a second second

10.19 CAPACITORS, VARIABLE AND FIXED, GAS OR VACUUM

Configuration	Factor - π_{CE}
---------------	---------------------

.

.....

ا اله المانية مراجع الرار الر

Configuration	^π CF		
Fixed	.10		
Variable	1.0		
	1		

Quality Factor - π _Q		
Quality	πQ	
MIL-SPEC	3.0	
Lower	20	

Environment Factor - π_E		
Environment	π _E	
G _B	1.0	
G _B G _F	3.0	
G _M	14	
NS	8.0	
NU	27	
AIC	10	
AIF	18	
AUC	70	
AUF	108	
A _{RW}	40	
S _F	.50	
MF	N/A	
ML	N/A	
CL	N/A	

Environment Factor - π_{-}

Example

Given: A 400 VDC rated capacitor type CQ09A1KE153K3 is being used in a fixed ground environment, 55°C component ambient temperature, and 200 VDC applied with 50 Vrms @ 60 Hz. The capacitor is being procured in full accordance with the applicable specification.

The letters "CQ" in the type designation indicate that the specification is MIL-C-19978 and that it is a Non-Established Reliability quality level. The 1st "K" in the designation indicates characteristic K. The "E" in the designation corresponds to a 400 volt DC rating. The "153" in the designation expresses the capacitance in picofarads. The first two digits are significant and the third is the number of zeros to follow. Therefore, this capacitor has a capacitance of 15,000 picofarads. (NOTE: Pico = 10^{-12} , $\mu = 10^{-6}$)

The appropriate model for CQ style capacitors is given in Section 10.3. Based on the given information the following model factors are determined from the tables shown in Section 10.3. Voltage stress ratio must account for both the applied DC volts and the peak AC voltage, hence,

S = .68	$S = \frac{DC \text{ Volts Applied} + \sqrt{2} (AC \text{ Volts Applied})}{DC \text{ Rated Voltage}} =$
	$\frac{200 + \sqrt{2} (50)}{400} = .68$
λ _b = .0082	Substitute S = .68 and $T_A = 55^{\circ}C$ into equation shown with Characteristic K λ_D Table.
$\pi_{\rm CV} = .94$ $\pi_{\rm Q} = 10$ $\pi_{\rm E} = 2.0$	Use Table Equation (Note 15,000 pF = .015 μ F)
$\pi_{\mathbf{Q}} = 10$	
$\pi_{\rm E} = 2.0$	

 $\lambda_{\rm p} = \lambda_{\rm b} \, \pi_{\rm CV} \, \pi_{\rm Q} \, \pi_{\rm E}$ = (.0082)(.94)(10)(2) = .15 Failures/10⁶ Hours

.

11.1 INDUCTIVE DEVICES, TRANSFORMERS

SPECIFICATION	STYLE
MIL-T-27	TF
MIL-T-21038	TP
MIL-T-55631	-

DESCRIPTION

Audio, Power and High Power Pulse Low Power Pulse IF, RF and Discriminator

$\lambda_p = \lambda_b \pi_Q \pi_E \text{ Failures/10^6 Hours}$

		В	ase Failure Rate	- λ _b		
		Maximum	Rated Operating	Temperature (°C	C)	
T _{HS} (℃)	85 ¹	105 ²	130 ³	155 ⁴	170 ⁵	>170 ⁶
HS (0) 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180	.0024 .0026 .0028 .0032 .0038 .0047 .0060 .0083 .012 .020 .036 .075	.0023 .0023 .0024 .0025 .0027 .0029 .0035 .0040 .0047 .0057 .0071 .0093 .013 .019 .030	.0022 .0023 .0024 .0025 .0026 .0027 .0029 .0030 .0033 .0035 .0039 .0043 .0048 .0054 .0062 .0072 .0085 .010 .013 .016 .020	.0021 .0022 .0022 .0023 .0023 .0023 .0023 .0024 .0025 .0026 .0027 .0028 .0029 .0031 .0033 .0035 .0038 .0042 .0046 .0052 .0059 .0068 .0079 .0095 .011 .014	.0018 .0019 .0019 .0020 .0020 .0021 .0021 .0022 .0023 .0024 .0024 .0025 .0026 .0027 .0028 .0030 .0031 .0032 .0034 .0036 .0038 .0038 .0040 .0042 .0044 .0047 .0050 .0053 .0056	.0016 .0016 .0016 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0018 .0018 .0018 .0018 .0018 .0019 .0019 .0020 .0020 .0020 .0021 .0021 .0021 .0022 .0023 .0024 .0025 .0026 .0027 .0029 .0030
185 NOTE: The mo	dels are valid only	if Tue is not ab	ove the temperatu	re rating for a giver	n insulation class.	.0032
NOTE: The models are valid only if T _{HS} is not above the temperature rating for a given insulation class. ¹ $\lambda_{b} = .0018 \exp\left(\frac{T_{HS} + 273}{329}\right)$ ^{15.6} MIL-T-27 Insulation Class Q, MIL-T-21038 Insulation Class Q, and MIL-T-55631 Insulation Class O.* ² $\lambda_{b} = .002 \exp\left(\frac{T_{HS} + 273}{352}\right)$ ¹⁴ MIL-T-27 Insulation Class R, MIL-T-21038 Insulation Class R, and MIL-T-55631 Insulation Class A.*						
$\lambda_{b} = .002 \exp\left(\frac{T_{HS} + 273}{352}\right)^{14}$ MIL-T-27 Insulation Class R, MIL-T-21038 Insulation Class R, and MIL-T-55631 Insulation Class A.*						
	MIL-T-27 Insulation Class S, MIL-T-21038 Insulation Class S, and MIL-T-55631 Insulation Class B.*					
$A_{b} = .002 \exp\left(\frac{T_{HS} + 273}{400}\right)^{10}$ MIL-T-27 Insulation Class V, MIL-T-21038 Insulation Class T, and MIL-T-55631 Insulation Class C.*						
$\lambda_{\rm b} = .00125 \exp\left(\frac{T_{\rm HS} + 273}{398}\right)^{3.6}$ MiL-T-27 Insulation Class T and MIL-T-21038 Insulation Class U.*						
$h_{b} = .00159 \exp\left(\frac{T_{HS} + 273}{477}\right)^{8.4}$ MIL-T-27 Insulation Class U and MIL-T-21038 Insulation Class V.*						
T _{HS} = Hot Spot Temperature (°C), See Section 11.3. *Refer to Transformer Application Note for Determination of Insulation Class						

11.1 INDUCTIVE DEVICES, TRANSFORMERS

Quality Factor - π_Q

Family Type*	MIL-SPEC	Lower
Pulse Transformers	1.5	5.0
Audio Transformers	3.0	7.5
Power Transformers and Filters	8.0	30
RF Transformers	12	30
* Refer to Transformer Application Note for Determination of Family Type		

Environment Factor - π_E		
Environment	π _E	
G _B	1.0	
G _F	6.0	
G _F G _M	12	
NS	5.0	
NU	16	
AIC	6.0	
A _{IF}	8.0	
AUC AUF	7.0	
A _{UF}	9.0	
A _{RW}	24	
S _F	.50	
M _F	13	
M _L C _L	34	
СL	610	

Determination of Family Type

	FORMER APPLICATION NOTE: lation Class and Family Type Determination
MIL-T-2	7 Example Designation
TF MIL-T-27 G	4 R 01 GA 576 inade Insulation Family Case Class Symbol
Family Typ	e Codes Are:
Power Tran	sformer and Filter: 01 thru 09, 37 thru 41
Audio Tran	sformer: 10 thru 21, 50 thru 53
Pulse Trans	sformer: 22 thru 36, 54
MIL-T-2 TP MIL-T-2103	1038 Example Designation 4 Q X1100BC001 38 Grade Insulation Class
	631. The Transformers are Designated ollowing Types, Grades and Classes.
Type I Type II Type III	 Intermediate Frequency Transformer Radio Frequency Transformer Discriminator Transformer
Grade 1	 For Use When Immersion and Moisture Resistance Tests are Required
Grade 2	- For Use When Moisture Resistance Test is Required
Grade 3	- For Use in Sealed Assemblies
Class O	- 85°C Maximum Operating Temperature
Class A	- 105°C Maximum Operating Temperature
Class B	- 125°C Maximum Operating Temperature
Class C	 > 125°C Maximum Operating Temperature
temperatu	denotes the maximum operating re (temperature rise plus maximum emperature).

Environment East

.

2

11.2 INDUCTIVE DEVICES, COILS

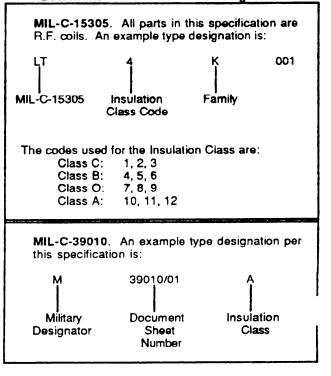
SPECIFICATION MIL-C-15305 MIL-C-39010 STYLE - DESCRIPTION Fixed and Variable, RF Molded, RF, Est. Rel.

$\lambda_p = \lambda_b \pi_C \pi_Q \pi_E$ Failures/10⁶ Hours

	Maximum Operating Temperature (°C)				
т _{НS} (°С)	85 ¹	105 ²	125 ³	150 ⁴	
30	.00044	.00043	.00039	.00037	
35	.00048	.00043	.00039	.00037	
40	.00053	.00046	.00042	.00037	
40	.0006	.00048	.00042	.00038	
50	.00071	.00048	.00045	.00038	
55	.00087	.00055	.00048	.00039	
60	.0011	.0006	.00051	.0004	
65	.0015	.00067	.00054	.00041	
70	.0023	.00076	.00058	.00042	
75	.0037	.00089	.00063	.00043	
80	.0067	.0011	.00069	.00044	
85	.014	.0013	.00076	.00046	
90		.0018	.00085	.00047	
95		.0024	.00096	.0005	
100		.0036	.0011	.00052	
105		.0057	.0013	.00055	
110			.0015	.00059	
115			.0018	.00063	
120			.0022	.00068	
125			.0028	.00075	
130				.00083	
135				.00093	
140				.0011	
145				.0012	
150				.0014	
NOTE: The models are valid only if T _{HS} is not above the temperature rating for a given insulation class.					
^{1.} $\lambda_{b} = .000335 \exp\left(\frac{T_{HS} + 273}{329}\right)$ ^{15.6} MIL-C-15305 Insulation Class O.*					
2 $\lambda_{\rm b} = .000379 \exp\left(\frac{T_{\rm HS} + 273}{352}\right)^{14}$ MIL-C-15305 Insulation Class A and MIL-C-39010 insulation Class A.*					
	$19 \exp\left(\frac{T_{HS}}{2}\right)$	<u>s + 273</u>) 8.7 364	MIL-C-3	Class B and	
4. λ _b = .0003	$λ_{\rm b} = .00035 \exp\left(\frac{{\rm T}_{\rm HS} + 273}{409}\right)^{10}$ MIL-C-15305 Insulation Class C and MIL-C-39010 Insulation Class F.*				
T _{HS} = Hot Spot Temperature (°C), See Section 11.3.					
*Refer to Coil Application Note for Determination of Insulation Class.					

Base Failure Rate - λ_h

Construction Factor - π_{C}


,

Quality Factor - π_Q				
Quality	πQ			
S	.03			
R	.10			
Р	.30			
М	1.0			
MIL-C-15305	4.0			
Lower	20			

11.2 INDUCTIVE DEVICES, COILS

Environment Factor - π _E			
Environment	π _E		
G _B	1.0		
G _F	4.0		
G _F G _M	12		
NS	5.0		
NU	16		
	5.0		
A _{IC} A _{IF}	7.0		
" ^A UC ^A UF	6.0		
AUF	8.0		
A _{RW}	24		
S _F	.50		
M _F	13		
м _L	34		
ML CL	610		

COIL APPLICATION NOTE: Insulation Class Determination From Part Designation

11.3 INDUCTIVE DEVICES, DETERMINATION OF HOT SPOT TEMPERATURE

Hot Spot temperature can be estimated as follows:

31

FA

$$T_{HS} = T_A + 1.1 (\Delta T)$$

where:

T_{HS} = Hot Spot Temperature (°C)

 T_A = Inductive Device Ambient Operating Temperature (°C)

 ΔT = Average Temperature Rise Above Ambient (°C)

 ΔT can either be determined by the appropriate "Temperature Rise" Test Method paragraph in the device base specification (e.g., paragraph 4.8.12 for MIL-T-27E), or by approximation using one of the procedures described below.

	△T Approximation					
	Informatic			∆T Appro	ximation	
1.	MIL-C-39010 Slash She MIL-C-39010/1C-30		, 13, 14	ΔT = 15°C		
	MIL-C-39010/4C, 60	C, 8A, 11, 12		ΔT = 35°C		
2.	Power Loss Case Radiating Surface	Area		ΔT = 12 5	w _L /A	
3.	Power Loss Transformer Weight			ΔT = 11.5	W _L /(Wt.) ^{.6766}	
4.					v _l /(wt.) [.] 6766	
w _L	 Power Loss (W) Radiating Surface Ar 	ea of Case (in2)	See below for MIL.	T-27 Case Areas		
	_		See Delow IOI MAL-	1-27 Case Aleas		
Wt.	= Transformer Weight	(lbs.)				
W	= Input Power (W)					
minial surfac	E: Methods are listed in platter ture devices with surface a ce areas from 3 in ² to 150 ce area.	areas less than 1 i	n ² . Equations 2-4	are applicable to de	evices with	
	MIL-T-	27 Case Radiating	Areas (Excludes	Mounting Surface)		
Case		Case	Area (in ²)	Case	Area (in ²)	
AF AG AH AJ	4 7 11 18	GB GA HB HA	33 43 42 53	LB LA MB MA	82 98 98 115	
EB EA FB	21 23 25	JB JA KB	58 71 72	NB NA OA	117 139 146	

84

KA

12.1 ROTATING DEVICES, MOTORS

The following failure-rate model applies to motors with power ratings below one horsepower. This model is applicable to polyphase, capacitor start and run and shaded pole motors. It's application may be extended to other types of fractional horsepower motors utilizing rolling element grease packed bearings. The model is dictated by two failure modes, bearing failures and winding failures. Application of the model to D.C. brush motors assumes that brushes are inspected and replaced and are not a failure mode. Typical applications include fans and blowers as well as various other motor applications. The model is based on Reference 4, which contains a more comprehensive treatment of motor life prediction methods. The reference should be reviewed when bearing loads exceed 10 percent of rated load, speeds exceed 24,000 rpm or motor loads include motor speed slip of greater than 25 percent.

The instantaneous failure rates, or hazard rates, experienced by motors are not constant but increase with time. The failure rate model in this section is an average failure rate for the motor operating over time period "t". The motor operating time period (t-hours) is selected by the analyst. Each motor must be replaced when it reaches the end of this period to make the calculated λ_p valid. The average failure rate, λ_p , has been obtained by dividing the cumulative hazard rate by t, and can be treated as a constant failure rate and added to other part failure rates from this Handbook.

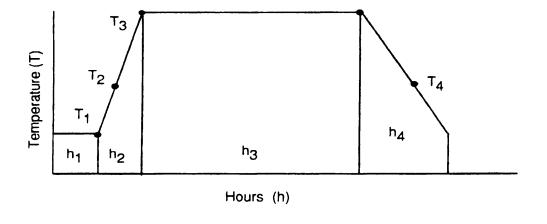
 $\lambda_{\rm p} = \left[\frac{t^2}{\alpha_{\rm B}^3} + \frac{1}{\alpha_{\rm W}}\right] \times 10^6 \, \text{Failures/10^6 Hours}$

			U		
T _A (°C) α _B (Hr	.) α _W (Hr.)	T _A (°C)	α _B (Hr.)	α _W (Hr.)
-40	310		55	44000	2.3e+05
-35	310		60	35000	1.8e+05
-30	330	7. 4e+07	65	27000	1.4e+05
-25	370	4.7 e +07	70	2200 0	1.1e+05
-20	460	3.1e+07	75	17000	8.8 e+ 04
-15	660	2.0 e+ 07	80	14000	7.0 e+ 04
-10	1100	1.4e+07	85	11000	5.7 e+04
-5	1900	9.20+06	90	9100	4.6e+04
0	3600	6. 4e +06	95	7400	3.8 0+ 04
5	6700	4.50+06	100	6100	3.1e+04
10	13000	3.2e+06	105	5000	2.5e+04
15	23000	2.3 0 +06	110	4200	2.1e+04
20	39000	1.60+06	115	3500	1.8 e+ 04
25	60000	1.20+06	120	2900	1.50+04
30	78000	8.9 e +05	125	2400	1.2e+04
35	86000	6. 6+ 05	130	2100	1.0 e+ 04
40	80000	5.0e+05	135	1700	8.90+03
45 50	68000 55000	3.8e+05 2.9e+-5	140	1500	7.5 e+ 03
α _B	= [10 (2.534 -	$\frac{\frac{2357}{T_A + 273}}{10} + \frac{1}{10\left(20 - \frac{4500}{T_A + 273}\right)}$	$\frac{1}{273}$ + 300		
α _W	$= 10^{\left[\frac{2357}{T_A + 273}\right]}$	- 1.83] cteristic Life for the Motor Bea	rina		
	= Weibull Charac				
^α B		cteristic Life for the Motor Win	-		
		cteristic Life for the Motor Win	-		

Bearing & Winding Characteristic Life - α_B and α_W

aCalculation for Cycled Temperature

The following equation can be used to calculate a weighted characteristic life for both bearings and windings (e.g., for bearings substitute α_B for all α 's in equation).


$$\alpha = \frac{\begin{pmatrix} h_1 + h_2 + h_3 + \cdots + h_m \end{pmatrix}}{\frac{h_1}{\alpha_1} + \frac{h_2}{\alpha_2} + \frac{h_3}{\alpha_3} + \cdots + \frac{h_m}{\alpha_m}}$$

where:

 $\alpha = \text{either } \alpha_B \text{ or } \alpha_W$

- $h_1 = Time at Temperature T_1$
- $h_2 =$ Time to Cycle From Temperature T₁ to T₃
- $h_3 = Time at Temperature T_3$
- hm = Time at Temperature Tm
- α_1 = Bearing (or Winding) Life at T_1
- α_2 = Bearing (or Winding) Life at T₂

NOTE:
$$T_2 = \frac{T_1 + T_3}{2}$$
, $T_4 = \frac{T_3 + T_1}{2}$

Thermal Cycle

12.2 ROTATING DEVICES, SYNCHROS AND RESOLVERS

DESCRIPTION Rotating Synchros and Resolvers

$$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm S} \pi_{\rm N} \pi_{\rm E}$$
 Failures/10⁶ Hours

NOTE: Synchros and resolvers are predominately used in service requiring only slow and infrequent motion. Mechanical wearout problems are infrequent so that the electrical failure mode dominates, and no mechanical mode failure rate is required in the model above.

Base Failure Rate - λ _b				
T _F (℃)	λ _b	T _F (℃)	λ _b	
30 35 40 45 50 55 60 65 70 75 80	.0083 .0088 .0095 .010 .011 .013 .014 .016 .019 .022 .027	85 90 95 100 105 110 115 120 125 130 135	.032 .041 .052 .069 .094 .13 .19 .29 .45 .74 1.3	
$\lambda_{\rm b} = .00535 \exp\left(\frac{T+273}{334}\right)^{8.5}$ T _F = Frame Temperature (°C)				
If Frame Temperature is Unknown Assume T _F = 40 °C + Ambient Temperature				

Size	Factor	-	πς
------	--------	---	----

		3	
	^π S		
DEVICE TYPE	Size 8 or Smaller	Size 10-16	Size 18 or Larger
Synchro	2	1.5	1
Resolver	3	2.25	1.5

Number of Brushes Factor - π_N

Number of Brushes	π _N
2	1.4
3	2.5
4	3.2

Environment Factor - π_E			
Environment	π _E		
G _B	1.0		
G _F	2.0		
G _M	12		
G _F G _M NS NU	7.0		
NU	18		
A _{IC}	4.0		
A _{IC} A _{IF}	6.0		
A _{UC} A _{UF}	16		
AUF	25		
A _{RW}	26		
	.50		
S _F M _F	14		
ML CL	36		
CL	680		

12.3 ROTATING DEVICES, ELAPSED TIME METERS

DESCRIPTION **Elapsed** Time Meters

$$\lambda_{p} = \lambda_{b} \pi_{T} \pi_{E}$$
 Failures/10⁶ Hours

Raco Failuro Rato -)

Environment Eacto

Dase Failure Hale - Mb				
Туре	λ _b			
A.C.	20			
Inverter Driven	30			
Commutator D.C.	80			

Temperature Stress Factor - π_T

Operating T (°C)/Rated T (°C)	πΤ
0 to .5	.5
.6	.6
.8	.8
1.0	1.0

Environment Factor - π_E			
Environment	πE		
GB	1.0		
G _B G _F	2.0		
G _M	12		
NS	7.0		
NU	18		
A _{IC}	5.0		
A _{IC} A _{IF}	8.0		
AUC	16		
AUF	25		
A _{RW}	26		
S _F	.50		
M _F	14		
ML	38		
CL	N/A		

12.4 ROTATING DEVICES, EXAMPLE

Example

Given: Fractional Horsepower Mctor operating at a thermal duty cycle of: 2 hours at 100°C, 8 hours at 20°C, 0.5 hours from 100°C to 20°C, and 0.5 hours from 20°C back to 100°C. Find the average failure rate for 4000 hours operating time.

The basic procedure is to first determine operating temperature at each time interval (or averge temperature when traversing from one temperature to another, e.g. $T_2 = (100 + 20)/2 = 60^{\circ}$ C. Determine α_B and α_W at each temperature and then use these values to determine a weighted average α_B and α_W to use in the λ_D equation.

$$h_1 = 2 \text{ hr.}$$
 $T_1 = 100^{\circ}\text{C}; \alpha_B = 6100 \text{ hours}; \alpha_W = 31000 \text{ hours}$
 $h_2 = h_4 = 0.5 \text{ hr.}$ $T_2 = 60^{\circ}\text{C}; \alpha_B = 35000 \text{ hours}; \alpha_W = 180000 \text{ hours}$
 $h_3 = 8 \text{ hr.}$ $T_3 = 20^{\circ}\text{C}; \alpha_B = 39000 \text{ hours}; \alpha_W = 1600000 \text{ hours}$

$$\alpha_{\rm B} = \frac{2+0.5+8+0.5}{\frac{2}{6100}+\frac{0.5}{35000}+\frac{8}{39000}+\frac{0.5}{35000}} = 19600 \text{ hours}$$

$$\alpha_{\rm W} = \frac{2 + 0.5 + 8 + 0.5}{\frac{2}{31000} + \frac{0.5}{180000} + \frac{8}{1600000} + \frac{0.5}{180000}} = 146000 \text{ hours}$$

$$\lambda_{\rm p} = \left(\frac{t^2}{\alpha_{\rm B}^3} + \frac{1}{\alpha_{\rm w}}\right) \times 10^6$$

$$\lambda_{\rm p} = \left(\frac{(4000)^2}{(19600)^3} + \frac{1}{146000}\right) \times 10^6$$

$$\lambda_{\rm D} = 9.0$$
 Failures/10⁶ Hours

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

MIL-R-83726 (Except Class C, Solid State Type)

13.1 RELAYS, MECHANICAL

SPECIFICATION MIL-R-5757

MIL-R-6106

MIL-R-19523 MIL-R-39016 MIL-R-19648 MIL-R-83725 DESCRIPTION Mechanical Relay

 $\lambda_p = \lambda_b \pi_L \pi_C \pi_C \gamma_C \pi_F \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failur	e Rate - λ _t	>
-------------	-------------------------	---

	Rated	Temperature	
T _A (°C)	85°C ¹	125°C ²	
25	.0060	.0059	
30	.0061	.0060	
35	.0063	.0061	
40	.0065	.0062	
45	.0068	.0064	
50	.0072	.0066	
55	.0077	.0068	
60	.0084	.0071	
65	.0094	.0074	
70	.011	.0079	
75	.013	.0083	
80 85	.016	.0089	
90	.020	.0097	
95		.011 .012	
100		.012	
105		.015	
110		.018	
115		.021	
120		.025	
125		.031	
^{1.} $\lambda_{\rm b} = .00555 \exp\left(\frac{T_{\rm A} + 273}{352}\right)^{15.7}$			
2. λ _b =	$.0054 \exp\left(\frac{T_{A}+2}{377}\right)$	$\frac{73}{-}$) ^{10.4}	
T _A =	Ambient Temperature (°C)		

Contact Form Factor - π_{C}

(Applies to Active Conducting Contacts)

Contact Form	^π C
SPST	1.00
DPST	1.50
SPDT	1.75
3PST	2.00
4PST	2.50
DPDT	3.00
3PDT	4.25
4PDT	5.50
6PDT	8.00

Load	Stress	Facto	r -	π_{L}
------	--------	-------	-----	-----------

1		Load Type		
S	Resistive ¹	Inductive ²	Lamp ³	
.05	1.00	1.02	1.06	
.10	1.02	1.06	1.28	
.20	1.06	1.28	2.72	
.30	1.15	1.76	9.49	
.40	1.28	2.72	54.6	
.50	1.48	4.77		
.60	1.76	9.49		
.70	2.15	21.4		
.80	2.72		-	
.90	3.55			
1.00	4.77			
1. $\pi_{L} = \exp\left(\frac{S}{.8}\right)^{2}$ 3. $\pi_{L} = \exp\left(\frac{S}{.2}\right)^{2}$				
2. $\pi_{L} = \exp\left(\frac{S}{.4}\right)^{2}$ S = Operating Load Current Rated Resistive Load Current				
For single devices which switch two different load types, evaluate π_1 for each possible stress load type				

combination and use the worse case (largest π_{I}).

Cycling Factor - TCYC		
Cycle Rate (Cycles per Hour)	^π CYC (Mil-SPEC)	
≥ 1.0	Cycles per Hour 10	
< 1.0	0.1	

Cycle Rate (Cycles per Hour)	^π CYC (Lower Quality)
> 1000	$\left(\frac{\text{Cycles per Hour}}{100}\right)^2$
10 - 1000	Cycles per Hour 10
< 10	1.0

NOTE:Values of π_{CYC} for cycling rates beyond the basic design limitations of the relay are not valid. Design specifications should be consulted prior to evaluation of π_{CYC} .

13.1 RELAYS, MECHANICAL

Quality	*0
R	.10
P	.30
X	.30 .45
U	.60
M	1.0
L	1.5
Non-Est. Rel.	3.0

Environment Factor - *E			
	۳E		
Environment	MIL-SPEC	Lower Quality	
GB	1.0	2.0	
G _F	2.0	5.0	
G _F G _M	15	44	
N _S	8.0	24	
NU	27	78	
AIC	7.0	15	
^ _{IF}	9.0	20	
Auc	11	28	
AUF	12	38	
^A uc ^A u r ^A RW	46	1:40	
	.50	1.0	
M _F	25	72	
Տ _F M _F Mլ Շլ	66	200	
ધ	N/A	N/A	

			×F	
Contact Rating	Application Type	Construction Type	MIL- SPEC	Lower Quality
Signal	Dry Circuit	Armature (Long)	4	8
Current		Dry Reed	6	18
(Low mv		Mercury Wetted Magnetic Latching		3
and ma)	ł	Balanced Armature	7	14
		Solenoid	7	14
0-5 Amp	General	Armature (Long)	3	6
	Purpose	Balanced Armature	5	10
		Solenoid	6 5	12
	Sensitive (0 - 100 mw)	Armature (Long and Short)	2	10
		Mercury Wetted	2	6
		Megnetic Latching	6	12
		Meter Movement	100	100
1		Balanced Armature	10	20
	Polarized	Armature (Short)	10	20
1		Meter Movement	100 6	100
1	Vibrating Reed	Dry Reed Mercury Wetted		12 3
	High Speed	Armature (Balanced	25	NA
	nign Speed	and Short)	23	
		Dry Reed	6	NA
	Thermal Time Delay	Bimetal	10	20
	Electronic		9	12
1	Time Delay,			
	Non-			
	Thermal			
	Latching,	Dry Reed	10	20
	Magnetic	Mercury Wetted	5 5	10 10
5-20	High	Balanced Aramture Vacuum (Glass)	20	40
Amp	Voltage	Vacuum (Ceramic)	5	10
	Medium Power	Armature (Long and Short)	3	6
	FOW	Mercury Wetted	1	3
1		Magnetic Latching	2	6
		Mechanical Latching		
		Balanced Armature	3	6
		Solenoid	2	6
			2	6
25-600	Contactors	Armature (Short)	7	14
Атр	(High	Mechanical Latching Balanced Armature	12 10	24 20
	Current)	Solenoid	10	10

Application and Construction Factor - π_{F}

13-2

.

13.2 RELAYS, SOLID STATE AND TIME DELAY

SPECIFICATION MIL-R-28750 MIL-R-83726

DESCRIPTION

Relay, Solid State Relay, Time Delay, Hybrid and Solid State

The most accurate method for predicting the failure rate of solid state (and solid state time delay) relays is to sum the failure rates for the individual components which make up the relay. The individual component failure rates can either be calculated from the models provided in the main body of this Handbook (Parts Stress Method) or from the Parts Count Method shown in Appendix A, depending upon the depth of knowledge the analyst has about the components being used. If insufficient information is available, the following default model can be used:

$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm Q} \pi_{\rm E}$ Failures/10⁶ Hours

Base Failure Rate -	λ _b	Environment F	actor - π _F
Relay Type	λ _b	Environment	π _E
Solid State	.40	G _B	1.0
Solid State Time Delay	.50	G _F	3.0
		G _M	12
Hybrid	.50	NS	6.0
		NU	17
		AIC	12
Quality Factor - T		A _{IF}	19
Quality	πQ	AUC	21
MIL-SPEC	1.0	AUF	32
Lower	4.0	A _{RW}	23
		S _F	.40
		M _F	12
		ML	33
		С _L	590

Base Failure Bate - A

I

14.1 SWITCHES, TOGGLE OR PUSHBUTTON

 SPECIFICATION

 MIL-S-3950
 MIL

 MIL-S-8805
 MIL

 MIL-S-8834
 MIL

MIL-S-22885 MIL-S-83731

DESCRIPTION Snap-action, Toggle or Pushbutton, Single Body

$\lambda_p = \lambda_b \pi_{CYC} \pi_L \pi_C \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λb

Description	MIL-SPEC	Lower Quality
Snap-action	.00045	.034
Non-snap Action	.0027	.040

Cycling Factor - π_{CYC}

	010
Switching Cycles per Hour	^π CYC
≤ 1 Cycle/Hour	1.0
> 1 Cycle/Hour	Number of Cycles/Hour

Load Stress Factor - n

		L	
Stress	Load Type		
S	Resistive	Inductive	Lamp
0.05	1.00	1.02	1.06
0.1	1.02	1.06	1.28
0.2	1.06	1.28	2.72
0.3	1.15	1.76	9 .49
0.4	1.28	2.72	54.6
0.5	1.48	4.77	
0.6	1.76	9.49	
0.7	2.15	21.4	
0.8	2.72		
0.9	3.55		
1.0	4.77		
S = Operating Load Current Rated Resistive Load Current			
π∟	= exp (S/		sistive Load
πL	= exp (S/		uctive Load
πլ	= exp (S/	.2) ² for Lar	np Load
NOTE: When the switch is rated by inductive load, then use resistive π_L .			

Contact Form and Quantity Factor - π_C

π _C
1.0
1.5
1.7
2.0
2.5
3.0
4.2
5.5
8.0

Environment Factor - π_{\Box}

	<u> </u>
Environment	π _E
GB	1.0
G _F	3.0
G _F G _M	18
NS	8.0
NU	29
AIC	10
AIF	18
AUC	13
AUF	22
A _{RW}	46
S _F	.50
M _F	25
ML	67
CL	1200

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

~

14.2 SWITCHES, BASIC SENSITIVE

SPECIFICATION MIL-S-8805

DESCRIPTION Basic Sensitive

$\lambda_p = \lambda_b \pi_{CYC} \pi_L \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

λ _b = λ _{bE} + n λ	bC (if Actua > 0.002	tion Differential is inches)	
λ _D = λ _{DE} + n λ		(if Actuation Differential is ≤ 0.002 inches)	
n = Number of Active Contacts			
Description	MIL-SPEC	Lower Quality	
λ _b ε	.10	.10	
у ^р С	.00045	.23	
^ک 00	.0009	.63	

Stress	Load Type		
S	Resistive	Inductive	Lamp
0.05	1.00	1.02	1.06
0.1	1.02	1.06	1.28
0.2	1.06	1.28	2.72
0.3	1.15	1.76	9.49
0.4	1.28	2.72	54.6
0.5	1.48	4.77	
0.6	1.76	9.49	
0.7	2.15	21.4	
0.8	2.72		
0.9	3.55		
1.0	4.77		
S = Operating Load Current Rated Resistive Load Current			
-	exp (S/.8)		tive Load
-	exp (S/.4)		tive Load
πլ =	exp (S/.2)	2 for Lamp	Load
NOTE: When the Switch is Rated by Inductive Load, then use Resistive π_L .			

Load Stress Factor - π_L

Cycling Factor - π_{CYC}

	010
Switching Cycles per Hour	^π CYC
≤ 1 Cycle/Hour	1.0
> 1 Cycle/Hour	Number of Cycles/Hour

Environment Factor - π_F

	C
Environment	π _E
G _B	1.0
G _F	3.0
G _B G _F G _M	18
NS	8.0
N _U	29
A _{IC}	10
AIF	18
AUC	13
AUF	22
ARW	46
S _F	.50
M _F	25
ML	67
cL	1200

14.3 SWITCHES, ROTARY

SPECIFICATION MIL-S-3786

DESCRIPTION Rotary, Ceramic or Glass Wafer, Silver Alloy Contacts

$\lambda_{p} = \lambda_{b} \pi_{CYC} \pi_{L} \pi_{E}$ Failures/10⁶ Hours

Base	Failure	Rate	-	ъ
------	---------	------	---	---

Base failure rate model $(\lambda_{\rm b})$:

^λ b ^{= λ} bE ^{+ nλ} bF	(for Ceramic RF Waters)
λ _b = λ _{bE} + n λ _b G	(for Rotary Switch Medium Power Wafers)

n = Number of Active Contacts

Description	MIL-SPEC	Lower Quality
λ _{bE}	.0067	.10
λ _{bF}	.00003	.02
λ _р G	.00003	.06

Cycling Factor - π_{CYC}		
Switching Cycles per Hour	πCYC	
≤ 1 Cycle/Hour	1.0	
> 1 Cycle/Hour	Number of Cycles/Hour	

Environment Factor - π _Ε		
Environment	π _E	
G _B	1.0	
G _F	3.0	
G _М	18	
NS	8.0	
NU	29	
AIC	10	
AIF	18	
AUC	13 ⁻	
AUF	22	
A _{RW}	46	
S _F	.50	
M _F	25	
ML	67	
CL	1200	

Load Stress Fa	ctor - $\pi_{\rm I}$
----------------	----------------------

LUQU SILESS FACIOLS IL				
Stress		Load Type		
S	Resistive	Inductive	Lamp	
0.05	1.00	1.02	1.06	
0.1	1.02	1.06	1.28	
0.2	1.06	1.28	2.72	
0.3	1.15	1.76	9.49	
0.4	1.28	2.72	54.6	
0.5	1.48	4.77	Í	
0.6 0.7	1.76 2.15	9.49 21.4		
0.7	2.15	21.4		
0.9	3.55			
1.0	4.77			
$S = \frac{\text{Operating Load Current}}{\text{Rated Resistive Load Current}}$ $\pi_{L} = \exp(S/.8)^{2} \text{ for Resistive Load}$ $\pi_{L} = \exp(S/.4)^{2} \text{ for Inductive Load}$ $\pi_{L} = \exp(S/.2)^{2} \text{ for Lamp Load}$				
NOTE: When the Switch is Rated by Inductive Load, then use Resistive π_L .				

14.4 SWITCHES, THUMBWHEEL

SPECIFICATION MIL-S-22710 Line

DESCRIPTION

Switches, Rotary (Printed Circuit) (Thumbwheel, Inand Pushbutton)

$\lambda_{p} = (\lambda_{b1} + \pi_{N} \lambda_{b2}) \pi_{CYC} \pi_{L} \pi_{E} \text{ Failures/10^6 Hours}$

CAUTION: This model applies to the switching function only. The model does not consider the contribution of any discrete components (e.g., resistors, diodes, lamp) which may be mounted on the switch. If significant (relative to the switch failure rate), the failure rate of these devices must be calculated using the appropriate section of this Handbook and added to the failure rate of the switch.

This model applies to a single switch section. This type of switch is frequently ganged to provide the required function. The model must be applied to each section individually.

Base Failure Rate - λ_{b1} and λ_{b2}

Description	MIL-SPEC	Lower Quality
λ _{b1}	.0067	.086
λ _{b2}	.062	.089

Number of Active Contacts Factor - π_N

 π_N = Number of Active Contacts

Stress		Load Type		
S	Resistive	Inductive	Lamp	
0.05	1.00	1.02	1.06	
0.1	1.02	1.06	1.28	
0.2	1.06	1.28	2.72	
0.3	1.15	1.76	9.49	
0.4	1.28	2.72	54.6	
0.5	1.48	4.77		
0.6	1.76	9.49		
0.7	2.15	21.4		
0.8	2.72			
0.9	3.55			
1.0	4.77			
S = Operating Load Current Rated Resistive Load Current				
π _L =	• • •	for Resistiv		
L.	• • •	for Inductive		
π _L =	exp (S/.2) ²	for Lamp Lo	bad	
NOTE: When the Switch is Rated by Inductive Load, then use Resistive π_l .				

Load Stres	s Factor - π_{I}
------------	----------------------

Cycling Factor - π_{CYC}

Switching Cycles per Hour	^π CYC
≤ 1 Cycle/Hour	1.0
> 1 Cycle/Hour	Number of Cycles/Hour

Environment Factor - π_{F}

Environment	π _E
G _B	1.0
G _F	3.0
G _M	18
NS	8.0
NU	29
A _{IC}	10
A _{IF}	18
AUC	13
AUF	22
A _{RW}	46
S _F	.50
M _F	25
ML	67
cL	1200

14.5 SWITCHES, CIRCUIT BREAKERS

SPECIFICATION MIL-C-55629 MIL-C-83383 MIL-C-39019 W-C-375

DESCRIPTION

Circuit Breakers, Magnetic, Unsealed, Trip-Free Circuit Breakers, Remote Control, Thermal, Trip-Free Circuit Breakers, Magnetic, Low Power, Sealed, Trip-Free Service Circuit Breakers, Molded Case, Branch Circuit and Service

$\lambda_p = \lambda_b \pi_C \pi_U \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Description	λ _b
Magnetic	.020
Thermal	.038
Thermal-Magnetic	.038

Quality	Factor	•	πΟ	
---------	--------	---	----	--

Quality	πQ
MIL-SPEC	1.0
Lower	8.4

Environment Factor - π_{r}

Configuration Factor - π_{C}

Configuration	π _C
SPST	1.0
DPST	2.0
3PST	3.0
4PST	4.0

Use Factor - π_U

Use	πυ
Not Used as a Power On/Off Switch	1.0
Also Used as a Power On/Off Switch	10

	E
Environment	^π E
GB	1.0
G _F	2.0
G _M	15
NS	8.0
NU	27
AIC	7.0
AIF	9.0
AUC	11
A _{UF}	12
ARW	46
SF	.50
MF	25
ML	66
CL	N/A

.

SPECIFICATION* MIL-C-24308 MIL-C-28748 MIL-C-28804 MIL-C-83513 ML-C-83733	DESCRIPTION Rack and Panel	SPECIFICATION* MIL-C-3607 MIL-C-3643 MIL-C-3650 MIL-C-3655 MIL-C-25516	DESCRIPTION Coaxial, RF
MIL-C-5015 MIL-C-26482 ML-C-28840	Circular	MIL-C-39012 MIL-C-55235 MIL-C-55339	
MIL-C-38999 MIL-C-81511 MIL-C-83723		MIL-C-3767 MIL-C-22992	Power
* NOTE: See following p	age for connector configurations.	MIL-C-49142	Triaxial, RF

15.1 CONNECTORS, GENERAL (EXCEPT PRINTED CIRCUIT BOARD)

 $\lambda_p = \lambda_b \pi_K \pi_P \pi_E \text{ Failures/10^6 Hours}$

APPLICATION NOTE: The failure rate model is for a mated pair of connectors. It is sometimes desirable to assign half of the overall mated pair connector (i.e., single connector) failure rate to the line replaceable unit and half to the chassis (or backplane). An example of when this would be beneficial is for input to maintainability prediction to allow a failure rate weighted repair time to be estimated for both the LRU and chassis. This accounting procedure could be significant if repair times for the two halves of the connector are substantially different. For a single connector divide λ_p by two.

Base Failure Rate - λ _b							
	Insert Material*						
Т _о (°С)	A ¹	В ²	c ³	D^4			
0	.00006	.00025	.0021	.0038			
10	.00008	.00033	.0026	.0048			
20	.00009	.00044	.0032	.0062			
30	.00011	.00057	.0040	.0078			
40	.00014	.00073	.0048	.0099			
50	.00016	.00093	.0059	.013			
60	.00020	.0012	.0071	.016			
70	.00023	.0015	.0087	.020			
80	.00027	.0019	.011	.026			
90	.00032	.0023	.013	.033			
100	.00037	.0029	.016	.043			
110	.00043	.0036	.020	.056			
120	.00050	.0045	.024	.074			
130	.0005 9	.0056					
140	.00069	.0070					
150	.00080	.0087					
160	.00094	.011					
170	.0011	.014					
180	.0013	.018					
190	.0016	.022					
200	.0019	.029					
210	.0023			ł			
220	.0028						
230	.0034			1			
240	.0042]			
250	.0053						
* If a rr insert m	 If a mating pair of connectors uses two types of insert materials, use the average of the base failure 						

Paco Eniluro Dato

rates for the two insert material types. See following page for insert material determination.

Base Failure Rate - λ_{b} (cont'd)

1.
$$\lambda_{b} = .020 \exp\left(\left(\frac{-1592.0}{T_{o} + 273}\right) + \left(\frac{T_{o} + 273}{473}\right)^{5.36}\right)\right)$$

2. $\lambda_{b} = .431 \exp\left(\left(\frac{-2073.6}{T_{o} + 273}\right) + \left(\frac{T_{o} + 273}{423}\right)^{4.66}\right)\right)$
3. $\lambda_{b} = .190 \exp\left(\left(\frac{-1298.0}{T_{o} + 273}\right) + \left(\frac{T_{o} + 273}{373}\right)^{4.25}\right)\right)$
4. $\lambda_{b} = .770 \exp\left(\left(\frac{-1528.8}{T_{o} + 273}\right) + \left(\frac{T_{o} + 273}{358}\right)^{4.72}\right)\right)$
T_o = Internal Contact Operating Temperature (°C)
T_o = Connector Ambient Temperature + Insert

Temperature Rise See following page for Insert Temperature Rise Determination.

MIL-	HD	BK	-21	7F
------	----	----	-----	----

15.1 CONNECTORS, GENERAL (EXCEPT PRINTED CIRCUIT BOARD)

	Inser	t Material Determ						Insert Ten	nperature l	Rise (AT °(C) Determi	nation
			Possible Insert		11	Amperes		Contact Gauge				
					erials			Per Contact	22	20	16	12
Configura		Specification	A	B	C	D	11	2	4	2	1	0
Rack and	Panel	MIL-C-28748		X		1		3	8	5	2	1
		MIL-C-83733 MIL-C-24308	x	X		1		4 5	13 19	8 13	4 5	
		MIL-C-28804	Ŷ	ÎŶ		l		6	27	18	8	2 3
		MIL-C-83513	Î	Ŷ				7	36	23	10	4
ł								8	46	30	13	5
Circular		MIL-C-5015		X		X	11	9	57	37	16	5 6
1		MIL-C-26482	X	X		X		10	70	45	19	7
		MIL-C-28840	X	X				15		96	41	15
1		MIL-C-38999 MIL-C-81511	^	XX				20 25			70 106	26 39
1		MIL-C-83723		x x				30			100	54
								35				72
Power		MIL-C-3767		X		Х	ΙL	40				92
		MIL-C-22992		X		X	ſ		***			
Coaxial		MIL-C-3607			\mathbf{v}			ΔT = 0.9	989 (i) ^{1.85}	2	2 Gauge C	ontacts
Coaxia		MIL-C-3643			X X				;40 (i) ^{1.85}		0 Gauge C	
		MIL-C-3650			Ŷ			ΔT = 0.0	74 (i) ^{1.85}	ے ا	•	
		MIL-C-3655			Х						6 Gauge C	
		MIL-C-25516			X			$\Delta T = 0.1$	00 (i) ^{1.85}	12	2 Gauge C	ontacts
		MIL-C-39012			X			$\Delta T = Ins$	ort Tormo	erature Ris	· 0	
		MIL-C-55235 MIL-C-55339		x	X				peres per			
		MIL-C-55555										
Triaxial		MIL-C-49142		X	<u> </u>		Iſ	RF Coaxial (Connorter		T = 5°C	
Insert Material				Tem	horat	uro		HF Coaxiai (Jonnector	5 Δ	1 = 5-0	
Type	Comm	on Insert Materia	ls		ge (°(RF Coaxial (Connector	s		
A		s Glass, Alumina			to 25			(High Power	Applicatio	ons) Δ^{-}	T = 50°C	
1 1		c, Polyimide					L					<u></u>
В		htalate, Melamino		-55	to 20	0						
		silicione, Silicone										
1	Epoxy	r, Polysulfone, Resin				i		N	latino/Unn	nating Fact	$hor - \pi \omega$	
C		rafluorethylene		-55	to 12	5	Г					
	(Teflon							Mating/Unm (per 1000 h		es	π	
		rifluorethylene					H				^π κ	
	(Kel-f)	(_		0 to .05			1 0	
D		ide (Nylon), Ioroprene		-55	to 12	5		> .05 to .5			1.0 1.5	
		ene), Polyethylei	ne					> .5 to 5			2.0	
hard a second se								> 5 to 50			3.0	
*These tem	nperatur	e ranges indicate	max	imun	ı		L	> 50			4.0	
		ert material only.					Γ			-		
		als generally have						*One cycle i	ncludes bo	oth connec	ct and disc	connect.
		caused by other			itions	of	L					
		Applicable conn ain connector op										
temperatur			CIAN	y								

15.1 CONNECTORS, GENERAL (EXCEPT PRINTED CIRCUIT BOARD)

Number of		Number of					
Active		Active	l _				
Contacts	π _P	Contacts	۳P				
	[1	1				
1	1.0	65	13				
2	1.4	70	15				
3	1.6	75	16				
4	1.7	80	18				
5	1.9	85	19				
6	2.0	90	21				
6 7	2.2	95	23				
8	2.3	100	25				
9	2.4	105	27				
10	2.6	110	30				
11	2.7	115	32				
12	2.9	120	35				
13	3.0	125	37				
14	3.1	130	40				
15	3. 3	135	43				
16	3.4	140	46				
17	3.6	145	50				
18	3.7	150	53				
19	3.9	155	57				
20	4.0	160	61				
25	4.8	165	65				
30	5.6	170	69				
35	6.5	175	74				
40	7.4	180	78				
45	8.4	185	83				
50	9.5	190	89				
55	11	195	94				
60	12 .	200	100				
^π P	$\pi_{P} = \exp\left(\frac{N\cdot1}{10}\right)^{q}$						
P	= 0.51064						
N = Number of Active Contacts							
connector the purp	e contact is the or which mates ose of transferr and triaxial conr	with another	element for energy. For				

Active	Pins	Factor	-	πο
		1 40101		~P

Environment Factor - π_{r}

	πΕ				
Environment	MIL-SPEC	Lower Quality			
G _B	1.0	2.0			
G _F	1.0	5.0			
G _M	8.0	21			
NS NU	5.0	10			
NU	13	27			
AIC	3.0	12			
AIC AIF	5.0	18			
AUC	8.0	17			
AUF	12	25			
ARW	19	37			
S _F	.50	.80			
M _F	10	20			
ML	27	54			
ML CL	490	970			

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

.

.

.

contact is counted as an active contact.

15.2 CONNECTORS, PRINTED CIRCUIT BOARD

SPECIFICATION MIL-C-21097

MIL-C-55302

DESCRIPTION One-Piece Connector

Two-Piece Connector

$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm K} \pi_{\rm p} \pi_{\rm E}$ Failures/10⁶ Hours

Base Failure Rate - λ _b						
T ₀ (℃)	λ _b	T _o (℃)	λ _b			
0 10 20 30 40 50 60 70 80 90 100	.00012 .00017 .00022 .00028 .00037 .00047 .00059 .00075 .00093 .0012 .0015	110 120 130 140 150 160 170 180 190 200	.0018 .0022 .0028 .0035 .0044 .0055 .0069 .0088 .011 .015			
	$\lambda_{b} = .216 \exp\left(\left(\frac{-2073.6}{T_{o} + 273}\right) + \left(\frac{T_{o} + 273}{423}\right)^{4.66}\right)$ $T_{o} = \text{Internal Contact Operating Temperature (°C)}$					

Connector Temperature Rise (AT °C) Determination

Connector rem	perature rue		ctermination
Amperes	C	ontact Guag	6
Per Contact	26	22	20
1 2 3 4 5	2 8 16 27 41	1 4 8 13 19	1 2 5 8 13
$\Delta T = 2.100 (i)^{1.85}$ 26 Guage Contacts $\Delta T = 0.989 (i)^{1.85}$ 22 Guage Contacts $\Delta T = 0.640 (i)^{1.85}$ 20 Guage Contacts			e Contacts
∆T = Contact Temperature Rise			
i = Amperes per Contact			

Mating/Unmating Factor - π_{K}

^π K
1.0
1.5
2.0
3.0
4.0
n and upmoting
g and unmating

Active Pins Factor - π _P			
Number of Active Contacts	^π р	Number of Active Contacts	π _P
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 45 55 60	$ \begin{array}{c} 1.0\\ 1.4\\ 1.6\\ 1.7\\ 1.9\\ 2.0\\ 2.2\\ 2.3\\ 2.4\\ 2.6\\ 2.7\\ 2.9\\ 3.0\\ 3.1\\ 3.3\\ 3.4\\ 3.6\\ 3.7\\ 3.9\\ 4.0\\ 4.8\\ 5.6\\ 6.5\\ 7.4\\ 8.4\\ 9.5\\ 11\\ 12\\ (N-1) 0 \end{array} $	65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200	13 15 16 18 19 21 23 25 27 30 32 35 37 40 43 46 50 53 57 61 65 59 74 78 83 89 94 100
π _P =	$\exp\left(\frac{N-1}{10}\right)^{q}$		

15.2 CONNECTORS, PRINTED CIRCUIT BOARD

F	L.	
	πE	
Environment	MIL-SPEC	Lower Quality
G _B	1.0	2.0
G _F	3.0	7.0
G _F G _M	8.0	17
NS	5.0	10
NU	13	26
AIC	6.0	14
A _{IF}	11	22
AUC	6.0	14
AUF	11	22
A _{RW}	19	37
S _F M _F	.50	.80
MF	10	20
M _L C _L	27	54
с _L	490	970

Environment Factor - π_F

q = 0.51064

N = Number of Active Pins

An active contact is the conductive element which mates with another element for the purpose of transferring electrical energy.

15.3 CONNECTORS, INTEGRATED CIRCUIT SOCKETS

SPECIFICATION

MIL-S-83734

.

1

DESCRIPTION

IC Sockets, Plug-in

$\lambda_p = \lambda_b \pi_P \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ _b		
Туре	λ _b	
All MIL-S-83734	.00042	
Active Pins Facto Number of Active Contacts	^{г - д} Р до тр	
6 8 10 14 16 18 20 22 24 24 28 36 40 48 50 64	2.0 2.3 2.6 3.1 3.4 3.7 4.0 4.3 4.6 5.3 6.7 7.4 9.1 9.5 13	
$\pi_{\rm P} = \exp\left(\frac{\rm N-1}{10}\right)^{\rm q}$		
q = 0.51064 N = Number of Active	e Contacts	
An active contact is the conductive element which mates with another element for the		

Environment Factor - π _E		
Environment	^π E	
G _B	1.0	
G _F	3.0	
G _M	14	
NS	6.0	
NU	18	
A _{IC}	8.0	
A _{IF} A _{UC} A _{UF}	12	
AUC	11	
AUF	13	
A _{RW}	25	
S _F	.50	
M _F	14	
ML	36	
СL	650	

purpose of transferring electrical energy.

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

16.1 INTERCONNECTION ASSEMBLIES WITH PLATED THROUGH HOLES

DESCRIPTION

Circuit Boards, Printed (PCBs) and Discrete Wiring

$\lambda_{p} = \lambda_{b} \left[N_{1} \pi_{C} + N_{2} (\pi_{C} + 13) \right] \pi_{Q} \pi_{E} \text{ Failures/10^{6} Hours}$

APPLICATION NOTE: For assemblies not using Plated Through Holes (PTH), use Section 17, Connections. A discrete wiring assembly with electroless deposit plated through holes is basically a pattern of insulated wires laid down on an adhesive coated substrate. The primary cause of failure for both printed wiring and discrete wiring assemblies is associated with plated through hole problems (e.g., barrel cracking).

Base	Failure	Rate	- λ _b	
------	---------	------	------------------	--

Technology	λ _b
Printed Wiring Assembly/Printed Circuit Boards with PTHs	.000041
Discrete Wiring with Electroless Deposited PTH (≤ 2 Levels of Circuitry)	.00026

Number of PTHs Factor - N1 and N2

Factor	Quantity
N ₁	Quantity of Wave Soldered Functional PTHs
N ₂	Quantity of Hand Soldered PTHs

Number of Circuit Planes, P	π _C
≤ 2	1.0
3	1.3
4	1.6
5	1.8
6	2.0
7	2.2
8	2.4
9	2.6
10	2.8
11	2. 9
12	3.1
13	3.3
14	3.4
15	3.6
16	3.7
Discrete Wiring w/PTH	1
$\pi_{\rm C}$ = .65 P ^{.63}	2 ≤ P ≤ 16

Complexity Factor - TC

Quanty	racior	^{- π} Q	
		_	_

Quality Factor -

Quality	^π Q
MIL-SPEC or Comparable Institute for Interconnecting, and Packaging Electronic Circuits (IPC) Standards	1
Lower	2

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _B G _F G _M	7.0
NS	5.0
NU	13
A _{IC} A _{IF} A _{UC} A _{UF}	5.0
A _{IF}	8.0
AUC	16
AUF	28
A _{RW} S _F M _F	19
S _F	.50
M _F	10
ML CL	27
СL	500

CONNECTIONS 17.1

DESCRIPTION

Connections Used on All Assemblies Except Those Using Plated Through Holes (PTH)

APPLICATION NOTE: The failure rate model in this section applies to connections used on all assemblies except those using plated through holes. Use the Interconnection Assembly Model in Section 16 to account for connections to a circuit board using plated through hole technology. The failure rate of the structure which supports the connections and parts, e.g., non-plated-through hole boards and terminal straps, is considered to be zero. Solderless wrap connections are characterized by solid wire wrapped under tension around a post. whereas hand soldering with wrapping does not depend on a tension induced connection. The following model is for a single connection.

$\lambda_p = \lambda_b \pi_Q \pi_E$ Failures/10⁶ Hours

Base	Failure	Rate	- An
------	---------	------	------

Connection Type	λ _b (F/10 ⁶ hrs)
Hand Solder, w/o Wrapping	.0026
Hand Solder, w/Wrapping	.00014
Crimp	.00026
Weld	.00005
Solderless Wrap	.0000035
Clip Termination	.00012
Reflow Solder	.000069

Quality Factor - π_{\frown}

Quality Grade	πQ	Comments	
Crimp Types			
Automated	1.0	Daily pull tests recommended.	
Manual			
Upper	1.0	Only MIL-SPEC or equivalent tools and terminals, pull test at beginning and end of each shift, color coded tools and terminations.	
Standard	2.0	MIL-SPEC tools, pull test at beginning of each shift.	
Lower	20.0	Anything less than standard criteria.	
All Types Except Crimp	1.0		

Environment Factor - π_{re}

	E
Environment	π _E
G _B	1.0
G _F	2.0
G _M	7.0
NS	4.0
ΝU	11
	4.0
A _{IC} A _{IF}	6.0
AUC	6.0
AUF	8.0
ARW	16
S _F	.50
M _F	9.0
ML	24
м _L СL	420

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

SIZE TH-16 SIZE TK OF L

DEVICE I SPRADE

17-1

.

18.1 METERS, PANEL

SPECIFICATION MIL-M-10304

.

DESCRIPTION Meter, Electrical Indicating, Panel Type, Ruggedized

$\lambda_p = \lambda_b \pi_A \pi_F \pi_Q \pi_E$ Failures/10⁶ Hours

Base	Failure	Rate	- λ _b	
------	---------	------	------------------	--

	0
Туре	λ _b
All	.090

Quality Factor - π_Q		
Quality	π _Q	
MIL-M-10304	1.0	
Lower	3.4	

Application Factor - π_A

Application	π _A
Direct Current	1.0
Alternating Current	1.7

Function Factor - π_F

Function	π _F
Ammeter	1.0
Voltmeter	1.0
Other*	2.8
	- 10 (N = 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1

Meters whose basic meter movement construction is an ammeter with associated conversion elements.

Environment Factor - π_E		
Environment	^π E	
G _B	1.0	
G _F	4.0	
G _F G _M	25	
NS	12	
NU	35	
A _{IC} A _{IF} A _{UC} A _{UF}	28	
AIF	42	
AUC	58	
AUF	73	
ARW	60	
	1.1	
S _F M _F	60	
ML	N/A	
Μ _L C _L	N/A	

19.1 QUARTZ CRYSTALS

SPECIFICATION MIL-C-3098

DESCRIPTION Crystal Units, Quartz

$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm Q} \pi_{\rm E}$ Failures/10⁶ Hours

Base Failure Rate - λ _b		
Frequency, f(MHz)	λ _b	
$\begin{array}{c} 0.5\\ 1.0\\ 5.0\\ 10\\ 15\\ 20\\ 25\\ 30\\ 35\\ 40\\ 45\\ 50\\ 55\\ 60\\ 65\\ 70\\ 75\\ 80\\ 85\\ 90\\ 95\\ 100\\ 105\\ \end{array}$.011 .013 .019 .022 .024 .026 .027 .028 .029 .030 .031 .032 .033 .033 .033 .034 .035 .035 .035 .036 .036 .037 .037 .037 .038	
$\lambda_{b} = .013(f)^{.23}$		

Environment Factor - #E		
Environment	π _E	
G _B	1.0	
G _F	3.0	
G _M	10	
NS	6.0	
NU	16	
A _{IC}	12	
A _{IF}	17	
AUC	22	
AUF	28	
A _{RW}	23	
S _F	.50	
MF	13	
ML	32	
CL	500	

Quality Factor - π_{O}

Quality	πQ
MIL-SPEC	1.0
Lower	2.1

SPECIFICATION MIL-L-6363 W-L-111

DESCRIPTION

Lamps, Incandescent, Aviation Service Lamps, Incandescent, Miniature, Tungsten-Filament

Environment Factor - π_m

$$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm H} \pi_{\rm A} \pi_{\rm F}$$
 Failures/10⁶ Hours

APPLICATION NOTE: The data used to develop this model included randomly occurring catastrophic failures and failures due to tungsten filament wearout.

Base Failure Rate - λ _b		
Rated Voltage, V _r (Volts)	λ _b	
5 6 12 14 24 28 37.5	.59 .75 1.8 2.2 4.5 5.4 7.9	
$\lambda_{b} = .074 (V_{r})^{1.29}$		

	E
Environment	π _E
G _B	1.0
G _F	2.0
G _M	3.0
NS	3.0
NU	4.0
A _{IC}	4.0
A _{IF}	4.0
AUC	5.0
AUF	6.0
A _{RW}	5.0
S _F	.70
M _F	4.0
ML	6.0
C	27

Utilization Factor - π_U

Utilization (Illuminate Hours/ Equipment Operate Hours)	π _U
< 0.10	0.10
0.10 to 0.90	0.72
> 0.90	1.0
> 0.90	1.0

Application Factor - π_A

πA
1.0
3.3

21.1 ELECTRONIC FILTERS, NON-TUNABLE

SPECIFICATION MIL-F-15733 MIL-F-18327

DESCRIPTION

Filters, Radio Frequency Interference Filters, High Pass, Low Pass, Band Pass, Band Suppression, and Dual Functioning (Non-tunable)

The most accurate way to estimate the failure rate for electronic filters is to sum the failure rates for the individual components which make up the filter (e.g., IC's, diodes, resistors, etc.) using the appropriate models provided in this Handbook. The Parts Stress models or the Parts Count method given in Appendix A can be used to determine individual component failure rates. If insufficient information is available then the following default model can be used.

$$\lambda_{\rm D} = \lambda_{\rm D} \pi_{\rm O} \pi_{\rm E}$$
 Failures/10⁶ Hours

Base Failure Rate - λh

Туре	λ _b
MIL-F-15733, Ceramic-Ferrite Construction (Styles FL 10-16, 22, 24, 30-32, 34, 35, 38, 41-43, 45, 47-50, 61-65, 70, 81-93, 95, 96)	.022
MIL-F-15733, Discrete LC Components, (Styles FL 37, 53, 74)	.12
MIL-F-18327, Discrete LC Components (Composition 1)	.12
MIL-F-18327, Discrete LC and Crystal Components (Composition 2)	.27

	Quali	ty⊦a	actor	- π _C	•
h/					

	<u>~a</u>
MIL-SPEC	1.0
Lower	2.9

Qualit

Environment Factor - π_m

	<u> </u>
Environment	π _E
G _B	1.0
G _F	2.0
G _M	6.0
NS	4.0
NU	9.0
AIC	7.0
A _{IF}	9.0
AUC	11
AUF	13
A _{RW}	11
S _F	.80
м _F	7.0
м _L	15
с _L	120

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

-

22.1 FUSES

SPECIFICATION W-F-1726 W-F-1814 MIL-F-5372 ML-F-23419 MIL-F-15160

DESCRIPTION

Fuse, Cartridge Class H Fuse, Cartridge, High Interrupting Capacity Fuse, Current Limiter Type, Aircraft Fuse, Instrument Type Fuse, Instrument, Power and Telephone (Nonindicating), Style F01

$$\lambda_{\rm D} = \lambda_{\rm D} \pi_{\rm E}$$
 Failures/10⁶ Hours

APPLICATION NOTE: The reliability modeling of fuses presents a unique problem. Unlike most other components, there is very little correlation between the number of fuse replacements and actual fuse failures. Generally when a fuse opens, or "blows," something else in the circuit has created an overload condition and the fuse is simply functioning as designed. This model is based on life test data and represents fuse open and shorting failure modes due primarily to mechanical fatigue and corrosion. A short failure mode is most commonly caused by electrically conductive material shorting the fuse terminals together causing a failure to open condition when rated current is exceeded.

Base Failure Rate - λ_b

Туре	λ _b
W-F-1726, W-F-1814, MIL-F- 5372, MIL-F-23419, ML-F-15160	.010

Environment Factor - TE

Environment	π _E
G _B	1.0
G _F	2.0
G _B G _F G _M	8.0
NS	5.0
NU	11
A _{IC} ^A IF ^A UC ^A UF	9.0
^A IF	12
AUC	15
AUF	18
A _{RW}	16
	.90
S _F M _F M _L C _L	10
ML	21
CL	230

23.1 MISCELLANEOUS PARTS

Part Type	Failure Rate
Vibrators (MIL-V-95) 60-cycle 120-cycle 400-cycle	15 20 40
Lamps Neon Lamps	0.20
Fiber Optic Cables (Single Fiber Types Only)	0.1 (Per Fiber Km)
Single Fiber Optic Connectors*	0.10
Microwave Elements (Coaxial & Waveguide) Attenuators (Fixed & Variable)	See Resistors, Type RD
Fixed Elements (Directional Couplers, Fixed Stubs & Cavities)	Negligible
Variable Elements (Tuned Stubs & Cavities)	0.10
Microwave Ferrite Devices Isolators & Circulators (≤100W)	0.10 × π _Ε
Isolators & Circulators (>100W)	0.20 × π _Ε
Phase Shifter (Latching)	0.10 × π _Ε
Dummy Loads < 100W	0.010 × π _Ε
100W to ≤ 1000W	0.030 x π _E
> 1000W	0.10 × π _E
Terminations (Thin or Thick Film Loads Used in Stripline and Thin Film Circuits)	0.030 × π _Ε

 $\lambda_{\rm D}$ - Failure Rates for Miscellaneous Parts (Failures/10⁶ Hours)

*Caution: Excessive Mating-Demating Cycles May Seriously Degrade Reliability

23.1 MISCELLANEOUS PARTS

Environment Factor - π_E

(Microwave Ferrite Devices)

Environment	π _E
G _B	1.0
G _F	2.0
G _M	8.0
NS	5.0
Ν _U	12
A _{IC}	5.0
A _{IF}	8.0
AUC	7.0
AUF	11
A _{RW}	17
S _F	.50
M _F	9.0
ML CL	24
٥ر	450

Environment Facto	ο r - π _F
(Dummy Load	<u>s)</u>
Environment	πE
G _B	1.0
G _F	2.0
G _M	10
G _M NS	5.0
NU	17
AIC	6.0
AIF	8.0
AUC	14
AUF	22
A _{RW}	25
S _F	.50
M _F	14
ML	36
СL	660

23-2

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

APPENDIX A: PARTS COUNT RELIABILITY PREDICTION

Parts Count Reliability Prediction - This prediction method is applicable during bid proposal and early design phases when insufficient information is available to use the part stress analysis models shown in the main body of this Handbook. The information needed to apply the method is (1) generic part types (including complexity for microcircuits) and quantities, (2) part quality levels, and (3) equipment environment. The equipment failure rate is obtained by looking up a generic failure rate in one of the following tables, multiplying it by a quality factor, and then summing it with failure rates obtained for other components in the equipment. The general mathematical expression for equipment failure rate with this method is:

$$\lambda_{\text{EQUIP}} = \sum_{i=1}^{i=n} N_i (\lambda_g \pi_Q)_i$$
 Equation 1

for a given equipment environment where:

- n = Number of different generic part categories in the equipment

Equation 1 applies if the entire equipment is being used in one environment. If the equipment comprises several units operating in different environments (such as avionics systems with units in airborne inhabited $(A_{||})$ and uninhabited $(A_{||})$ environments), then Equation 1 should be applied to the portions of the equipment in each environment. These "environment-equipment" failure rates should be added to determine total equipment failure rate. Environmental symbols are defined in Section 3.

The quality factors to be used with each part type are shown with the applicable λ_g tables and are not necessarily the same values that are used in the Part Stress Analysis. Microcircuits have an additional multiplying factor, π_L , which accounts for the maturity of the manufacturing process. For devices in production two years or more, no modification is needed. For those in production less than two years, λ_g should be multiplied by the appropriate π_l factor (See page A-4).

It should be noted that no generic failure rates are shown for hybrid microcircuits. Each hybrid is a fairly unique device. Since none of these devices have been standardized, their complexity cannot be determined from their name or function. Identically or similarly named hybrids can have a wide range of complexity that thwarts categorization for purposes of this prediction method. If hybrids are anticipated for a design, their use and construction should be thoroughly investigated on an individual basis with application of the prediction model in Section 5.

The failure rates shown in this Appendix were calculated by assigning model default values to the failure rate models of Section 5 through 23. The specific default values used for the model parameters are shown with the λ_g Tables for microcircuits. Default parameters for all other part classes are summarized in the tables starting on Page A-12. For parts with characteristics which differ significantly from the assumed defaults, or parts used in large quantities, the underlying models in the main body of this Handbook can be used.

APPENDIX	A :	PARTS	COUNT

Part (Frame Extreme Extreme Extreme Extreme Fact (Frame Fact (Frame) Fact (Frame) <thfac (fram)<="" th=""> Fact (Fram) Fact (Fra</thfac>		T Based	te Falluna En Shown,	Rate, J _g Solder or		(Failurea/10 ⁶ Hours) fo Weld Seal DiPe/PQAs		w Microcire (No. Pine .		See Page A-4 own Below), x	्र म जूम	^x Q Vali (Device	ies In Prod	r ¤g Values 1 (Device in Production ≥ 2 Yr.))	2 Yr.))		
Bandle Herkholt, Marken, Daginal Herkholt, Marken,	Section	Part Type	Eminon.↓ [(*C)↓	6 8 8	9.8	38			N ² ×	Tr Tr	د بول	58	ARW	<u>и</u> 5			5
Tri-rickims (16Ph Dip) 005 012 023	J	Bipolar Technology						3	2		2		C	2	2		8
101 - 1000 Cases 102 + 100 Cases		GERENLOGIC Arrays, Ligital (Ea = .4) 1 - 100 Gates	(16 Pin DIP)	.0036	012	124	1.00	0.05	300	000		0.0					1
OTI ID 50000 Gate (160 Fringh) 031 032 033 </th <th></th> <th>101 - 1000 Gales</th> <th>(24 Pin DIP)</th> <th>.0060</th> <th>020</th> <th>860.</th> <th>8</th> <th>550</th> <th>620</th> <th>0.050</th> <th></th> <th>220</th> <th></th> <th></th> <th>020</th> <th>690;</th> <th>~ •</th>		101 - 1000 Gales	(24 Pin DIP)	.0060	020	860.	8	550	620	0.050		220			020	69 0;	~ •
Total Discretion Total Discretion <thtotal discretion<="" th=""> <thtotal discretion<="" t<="" th=""><th></th><th>1001 to 3000 Gathes</th><th>(40 Pin DIP)</th><th>.011</th><th>88</th><th>990.</th><th>589</th><th>.097</th><th>020</th><th>.085</th><th></th><th></th><th>13</th><th>011</th><th></th><th>- 9</th><th></th></thtotal></thtotal>		1001 to 3000 Gathes	(40 Pin DIP)	.011	88	990.	5 8 9	.097	020	.085			13	011		- 9	
9.0000 Game (100 he 0,000		3001 to 10,000 Gales	(128 Pin PGA)	EE0-	.12	.22	2	.33	23	28		46	-	033	28	8	
Classification Classif		10,000 to 30,000 Galles 30,000 to 60,000 Galles		075	55	33	33	8 4. 63	₩E.	42		89.	.65	.052	4	8	:2
1 - 100 Treatment (1+Ph) DPI 0.05 0.34 0.06 0.34 0.06 0.34 0.06 0.34 0.06 0.34 0.06 0.34 0.06 0.34 0.06 0.34 0.06 0.34 0.06 0.34 0.06 0.	5.1	GateA opic Arrays, Linear (Ea = .65)					2	8		00.		<u>B</u>	8	<u>6/0</u> .	.53	7 7	5
OT: ODD Transients (16 Fm DP) 0.07 <th0.07< th=""> <th0.07< th=""> 0.07<th></th><th>1 - 100 Transistors</th><th>(14 Pin DIP)</th><th>.0095</th><th>.024</th><th>620</th><th></th><th>.049</th><th>057</th><th>062</th><th>12</th><th>5</th><th>078</th><th>0005</th><th>044</th><th>900</th><th>•</th></th0.07<></th0.07<>		1 - 100 Transistors	(14 Pin DIP)	.0095	.024	620		.049	057	062	12	5	078	0005	044	900	•
With the second secon		101 - 300 Transistors	(18 Pin DIP)	.017	.041	.065		078	2	=	52	24	.13	2002	072		
Programmable Logic Arrays (Ea = 4)		001 - 1000 Iransistors 1001 - 10.000 Transistors		033	•0. •			<u>5</u>	61. 00	19	Ŧ	44	.22	033	.12	R	50
Up e son Game (19 hm DP) (001 b son Game (19 hm DP) (001 b son Game (19 hm DP) (001 b son Game (11 hm DP) (01 hm DP)	5.1	Programmable Lodic Arraya (Ea = 4)		22	-			5	67.	99	.63	6	35	020	<u>-</u>	ŧ	3.4
QCI is 1000 Gase [201 is 1000 Gase [201 is 1000 Gase [201 is 2000 Gase <th[201 2000="" gas<="" is="" th=""> [201 is 2000 Gas <</th[201>		Up to 200 Galles	(18 Pin DIP)	0081	016	0.00	1.00	010	~~~~	107		į					
Molifold Molifold (40 hn DIP) 022 052 103 113 114 103 114 103 114 103		201 to 1000 Gates	(24 Pin DIP)	.011	028	840	30	065	054	/c/.		ē e	450.	.0061	120.	920 [.]	~ ~
MeSS fractionsions (and operating) (i e hn Dip) (i to i to coordiants) (i e hn Dip) (i to coord		1001 to 5000 Gattes	(40 Pin DIP)	.022	.052	087	080	12	880	3 =		2 9		- 6	È.	<u>,</u> ,	> c c
Tent for Construction Constructin Construction Const	4	MOS. Technology														, ,	<u></u>
T b 100 Game T b 100 Game <tht 100="" c="" game<="" th=""> <tht 100="" c="" game<="" th=""> <tht 100="" c="" game<="" th=""> T c 100 Game<th></th><th>GaterLopic Arrays, Digital (Ea = .35)</th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tht></tht></tht>		GaterLopic Arrays, Digital (Ea = .35)		_													
Interview (interview)					.015	.027	.027	.039	.029					.0057	.033	.074	1.2
With a source (12) (12) (12) (12) (12) (17) (16)					.028	045	640.	.062	040					010	053	2	
10001 to 30,000 Game (1100 Fin PGA) 084 27 35 51 73 36 51 74 30 13 30 10 30,0001 to 30,000 Game (1100 Fin PGA) (34 27 35 51 73 53 51 73 36 51 73 30 69 50 17 72 044 066 30 16 1 br 1000 Transiens (14 Ph DP) 017 041 065 057 062 12 13 017 011 005 014 006 005 014 006 011 017 011 002 014 016 017 017 011 002 014 016 017 017 011 017 011 017 011 017 011 017 011 017 011 017 011 017 011 017 011 017 011 016 017 012 012 014 016 01	_				6	980. 980.	.20	=:	980.					010	005	i.	9.9
300001b 60000 Game (24 Pm PGA) 13 31 53 51 73 52 69 56 17 20 004 66 10 Game Option 60,000 Game (14 Pm DIP) (16 Pm DIP) (13 31 53 51 73 55 65 82 17 06 13 63 14 10 to 100 Transiens (16 Pm DIP) 005 024 039 054 10 13 14 22 034 096 13 14 007 033 12 118 15 21 29 30 67 33 014 109 13 12 15 21 29 033 014 107 007 002 12 11 22 033 014 109 12 12 13 12 13 12 13 12 12 13 12 13 12 13 12 13 12 019 017 <t< th=""><th></th><th>10 001 to 30 000 Game</th><th></th><th></th><th>- c</th><th>ç, s</th><th>Ņ</th><th>85.</th><th>.27</th><th></th><th></th><th></th><th></th><th>010</th><th>30</th><th>69.</th><th>12</th></t<>		10 001 to 30 000 Game			- c	ç, s	Ņ	85.	.27					010	30	69.	12
Game/op/c Arrays. Unser (Fa 65) (1 Ph DIP) 0005 024 039 037 036 13 <		30,000 to 60,000 Gates	(224 Pin PGA)		316		2.5							084	0	0, 0	21
I to 100 frantietora (14 Phn Dip) 0005 024 039 057 062 12 13 076 0095 044 096 301 to 300 frantietora (10 Phn Dip) 037 041 108 07 11 22 24 13 017 072 15 301 to 300 frantietora (40 Phn Dip) 033 074 110 025 011 22 24 13 017 072 15 1001 to 1000 frantietora (40 Phn Dip) 033 035 052 035 044 070 070 017 072 16 Logic Anny, Most (Ansiling) 035 035 052 035 044 070 070 070 070 071 072 13 12 23 13 12 23 13 12 23 26 13 11 12 076 0055 052 053 054 056 054 100 10 12 23 13	5.1	Gater Logic Arrays, Linear (Ea = .65)												2	2		5
301 br.1000 Transiens (10 multicle in the initial of initinitinitial of initial of initial of initinitinitial of i		1 to 100 l'ransistors		.0095	024	660.	1760.		.057	.062	.12	13	.076	0.095	.044	080	÷
Totaling Gale Programmidie (40 Pm DIP) 0.03 1/2 1/3 1/9 1/8 1/4 22 0.03 1/2 2/8 1/2 2/9 3/1 2/2 0.03 1/2 2/3 1/2 2/3 1/2 2/3 1/2 2/3 1/2 2/3 1/2 2/3 1/2 2/3 1/2 2/3 1/2 2/3 1/2 2/3 1/2 2/3 1/2 2/3 1/2 2/3 1/2 2/3 1/2 1/2 2/3 1/2	-			200	5	.065	.054		<u>6</u>	Ŧ.	.22	.24	.13	.017	072	5.	-
Floating Gale Programmidie Floating Gale Programin Floating Gale Programmidie Fl		1001 to 10,000 Translators		550	4 24	=	.080 1		6.	5 C	14	4	22	.033	12	97	2.0
Oper Anily, MAS (La - 36) (24 Pin DiP) 0045 018 035 035 035 052 035 044 070 070 0046 044 10 1 bb 1 b	5.1	Floating Gate Programmable					2		87	00	20.		5	6	8	Ţ	4.6
I We be K Cells (24 m UP) 0045 018 035 035 035 035 044 044 070 070 0046 044 10 K to Sek Cells (28 Pm DIP) 0055 022 042 042 052 053 084 084 044 10 Zsek to iM cels (28 Pm DIP) 0055 022 042 042 052 053 084 083 052 12 12 12 13 13 0095 079 19 Ver to be 8 Bits (40 Pm DIP) 0055 033 064 063 034 065 080 083 13 12 14 10 24 11 24 11 24 11 24 24 33 31 31 31 24 44 49 052 11 24 24 11 24 24 11 22 13 11 24 24 11 24 11 24		LOUC ATTY, MUS (EL = 30)															
extr zsext cala (26) Fin Dip (40 Pin Dip) 0061 0.22 0.42 0.62 0.52 0.53 0.64 0.03 0.52 12 Zsext to IM.cels (40 Pin Dip) 0061 022 042 063 043 054 055 063 055 13 13 005 052 12 Microprocessors Bible (40 Pin Dip) 0095 033 041 065 080 083 13 11 24 Up to 18 Bits (41 Pin PGA) 11 23 31 47 44 49 65 81 052 20 41 24 11 24 11 24 11 24 11 22 21 24 32 31 31 31 31 31 31 24 44 49 65 11 24 24 11 24 24 11 24 24 11 23 31 31 31 31 31 3			(24 Pho OIP)	0046	018	.035	.035	.052	.035	.044	.044	070	.070	.0046	.044	10	0.
ZGK b IM/Cels (40 Ph DIP) 0005 033 064 065 003 033		64K to 256K Calls			200	240		290	042	052	.053	084	.083	0056	.052	.12	2.3
Macoprosessors, Bipler (Ea = .4) (40 Pin DIP) 028 061 098 031 12 13 17 22 18 0.093 0.11 24 Up to 18 Bis (40 Pin DIP) 052 11 18 10 23 21 24 32 39 31 052 11 24 Up to 28 Bis (128 Pin PGA) 011 23 36 33 47 44 49 65 81 65 11 42 86 1 24 1 1 24 1 24 1 23 31 052 20 41 24 1 26 1 24 1 24 1 26 1 26 1 23 31 31 31 31 31 31 21 26 31 32 26 31 31 27 56 10 10 10 1 22 33 27 56 52 36 10<		256K to 1M Cells	(40 Pin DIP)	0005	033	0.045	58	200	580	024 080	.055 262	086	1 80	.00 61	053	5	8.0 1.0
Up to 8 Bits (40 Pin Dity) 028 061 098 13 12 13 17 22 18 028 11 24 Up to 16 Bits (64 Pin PGA) 052 11 18 16 23 21 24 32 39 31 052 20 41 Up to 28 Bits (128 Pin PGA) 11 23 36 33 47 44 49 65 61 42 86 1 24 12 28 11 23 36 1 24 17 24 32 39 31 052 20 41 24 11 25 36 11 24 30 31 052 20 41 42 36 31 32 32 32 32 32 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33	5.1	Microprocessors, Bipoler (Ea = .4)							2	2007	200	2	2	CAND.	2/2	2	5.E
Up to 31 Bits (04 mm MGA) 11 23 16 23 21 24 32 39 31 052 20 41 Moreoprocessors, MCS (Ea = 35) (128 Pm PGA) 11 23 36 33 47 44 49 65 81 65 71 42 86 1 42 86 1 46 7 46 7 46 7 46 7 46 7 46 7 46 7 46 7 46 7 46 7 46 7 46 7 7 46 7 7 46 7 7 46 7 7 86 7 7 86 7 7 7 8 7 7 7 8 7 7 7 7 7 8 7 7 8 7 7 7 7 8 7 7 8 7 7 8 7 <				028	8	860	09	13	.12	.13		22	18	.028	11.	24	3.3
Microprocessors, MOS (Ea = .35) (40 Pin Class) 048 10 12 16 17 24 49 65 11 42 86 1 Up to 8 Bits (40 Pin Class) 048 089 13 .12 16 17 .24 28 .22 .048 .15 .26 .11 .42 .86 .1 .40 .033 .15 .28 .10 .15 .28 .10 .033 .27 .50 .10 .10 .20 .10 .15 .28 .10 .15 .28 .10 .033 .27 .50 .10 </th <th></th> <th></th> <th></th> <th>750.</th> <th>- 6</th> <th>80 e</th> <th>- c</th> <th>53</th> <th>5</th> <th>54</th> <th></th> <th>39</th> <th>31</th> <th>.052</th> <th>20</th> <th>Ŧ</th> <th>5.0</th>				750.	- 6	80 e	- c	53	5	5 4		39	31	.052	20	Ŧ	5.0
(40 Pin DIP) .048 .089 .13 .12 .16 .16 .17 .24 .28 .22 .048 .15 .28 (64 Pin PGA) .093 .17 .24 .28 .32 .40 .093 .15 .28 (128 Pin PGA) .19 .34 .49 .45 .60 .61 .66 .90 1.1 .82 .19 .54 1.0 .10 <th< th=""><th>5.1</th><th>Mcroprocessors, MOS (Ea = .35)</th><th></th><th></th><th>2</th><th>B2:</th><th><u>S</u>.</th><th></th><th>5</th><th>48</th><th></th><th>8.</th><th>65</th><th>= </th><th>27</th><th>88</th><th>12</th></th<>	5.1	Mcroprocessors, MOS (Ea = .35)			2	B 2:	<u>S</u> .		5	48		8.	65	=	2 7	88	12
(64 Pin PGA) 0.03 17 24 22 29 30 32 45 52 40 093 17 27 50 1 (128 Pin PGA) 19 34 49 45 50 51 66 90 1.1 82 19 54 1.0 1			(40 Pin DIP)	048	680 .	.13	12	16	16			90			4		
11/20 THI TGAUL 18 .34 .49 .45 .60 .61 .66 .90 1.1 .82 .19 .54 1.0 1			(But Pin PGA)	66.	1	54	121	29	30			50	19		c	9 0 2 1	4.60
					5	2	Ş	8	5			. -	.82		.54	1.0	12

A-2

.

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

المعرفة متراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

APPENDIX A: PARTS COUNT

5.1 MCS Table MC MC <t< th=""><th>1. <th1.< th=""> 1. 1. 1.<!--</th--><th></th><th></th><th></th><th></th><th>J</th><th><u> </u></th><th></th><th>ſ</th><th></th><th>Woles used and the second</th><th>×</th><th>- 1 0 0 </th><th>= 1 (Device in Pr</th><th>oduction</th><th>->-></th><th>-</th><th></th></th1.<></th></t<>	1. 1. <th1.< th=""> 1. 1. 1.<!--</th--><th></th><th></th><th></th><th></th><th>J</th><th><u> </u></th><th></th><th>ſ</th><th></th><th>Woles used and the second</th><th>×</th><th>- 1 0 0 </th><th>= 1 (Device in Pr</th><th>oduction</th><th>->-></th><th>-</th><th></th></th1.<>					J	<u> </u>		ſ		Woles used and the second	×	- 1 0 0 	= 1 (Device in Pr	oduction	->->	-	
Munices (ADM (Exs)) Munices (ADM (Exs)) Munices (ADM (Exs)) ADM (Exs)	Mutrick Mutrick <t< th=""><th>w.</th><th></th><th></th><th></th><th>8</th><th>¥ v</th><th>S</th><th>2</th><th>Å C</th><th>AF.</th><th></th><th>ž</th><th></th><th></th><th></th><th>1</th><th></th></t<>	w.				8	¥ v	S	2	Å C	AF.		ž				1	
31 Memory (MA) (24 Ph/DP) DOI: (15 Ph/DP) <thdoi: (15 Ph/DP) <thdoi: (15 Ph/DP) <thdo< th=""><th>31 32<</th><th></th><th>Memories, ROM (Ea = .6)</th><th></th><th></th><th></th><th></th><th></th><th>8</th><th>22</th><th>75</th><th>8</th><th>58</th><th>75</th><th>53</th><th>¥- 8</th><th>₹'¥</th><th>പ</th></thdo<></thdoi: </thdoi: 	31 32<		Memories, ROM (Ea = .6)						8	22	75	8	58	75	53	¥- 8	₹'¥	പ
Site Description Description <thdescription< th=""> <thde< th=""><th>Serve 126K Texture Control Distribution <thdistremat< th=""> <thdistremat< th=""> <thdist< th=""><th></th><th></th><th>(24 Pin Dip</th><th>-</th><th></th><th>036</th><th>200</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>2</th><th>2</th></thdist<></thdistremat<></thdistremat<></th></thde<></thdescription<>	Serve 126K Texture Control Distribution Distribution <thdistremat< th=""> <thdistremat< th=""> <thdist< th=""><th></th><th></th><th>(24 Pin Dip</th><th>-</th><th></th><th>036</th><th>200</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>2</th><th>2</th></thdist<></thdistremat<></thdistremat<>			(24 Pin Dip	-		036	200									2	2
37 Effequencies 37 000 011 001	37 Human PRAUVERPAA. (ePn-Dir) 011 033 034 036		04 5 256 256				043	042 042	020 080	037	.045	048	.074	1.00.	0047		3	
EFFONL EFFONL<	The Price The Price <t< th=""><th>5</th><th>╀╴</th><th>(40 Pin Dip</th><th></th><th></th><th>045</th><th>- 0 - 0</th><th>990.</th><th>048</th><th>.050.</th><th>060</th><th>80.</th><th>980.</th><th>0059</th><th>550</th><th>. F.</th><th>- ~</th></t<>	5	╀╴	(40 Pin Dip			045	- 0 - 0	990.	048	.050.	060	80.	980.	0059	550	. F.	- ~
Up betweet Control of the	United constraint United constraint		EEPROM, EAPROM (Ea6)	-				<u>B</u>	B .	520	8	=	52		.0067	.055 .083	13	
1 Uke Bekk Edite Protein 0.001 0.18 0.001 0.011	2 Extension Cold <				_													3
3 Sack b 1 (6) (30) (31)	Service 1: edits Constraint C		16K 10 64K			018	.036	.036	053	200								
13 Human, DiAL(Ex.4) (10 Fhi DIP) 012 013 <th>13 Human, Dikur Cold Cold</th> <th></th> <th></th> <th></th> <th></th> <th>.022</th> <th>949</th> <th>643</th> <th>064</th> <th>046</th> <th>048</th> <th>040</th> <th>.075</th> <th>.072</th> <th>.0048</th> <th>045</th> <th>÷</th> <th>•</th>	13 Human, Dikur Cold					.022	949	643	064	046	048	040	.075	.072	.0048	045	÷	•
Up to field Up to field <thut field<="" th="" to=""> <thup field<="" th="" to=""></thup></thut>	Dynamic Dynamic <t< th=""><th>5.2</th><th>₽</th><th>(40 Pin DIP)</th><th></th><th>860</th><th>0.46</th><th>Ş Ş</th><th>.067</th><th>051</th><th>080.</th><th>073</th><th>8. 9</th><th>- 660</th><th>.0062</th><th>950</th><th>8</th><th>0. C</th></t<>	5.2	₽	(40 Pin DIP)		860	0.46	Ş Ş	.067	051	080.	073	8. 9	- 660	.0062	950	8	0. C
2 Exerct 117 DOI: 027 027 038 034 035 044 035 035 044 035 035 044 035 035 044 035 035 044 035 035 14 11 011 031 035 035 044 035 035 035 035 035 035 035 035 035 035 035 035 035 035 035 035 035 035 <th>2 Lumber Constraint Constraint</th> <th></th> <th></th> <th></th> <th>┢</th> <th></th> <th></th> <th>8</th> <th>₽</th> <th>.060</th> <th>360.</th> <th>.12</th> <th>2</th> <th>200.</th> <th>.0072</th> <th>.057</th> <th>13</th> <th>2.0</th>	2 Lumber Constraint				┢			8	₽	.060	360 .	.12	2	200.	.0072	.057	13	2.0
Werk in Start Werk in	AVX D 256K EXT MUL (MOS 1 BMOS) Z FFM DIP (1 = 4) Other 200 (1 = 2) <		16K 10 64K			.014	.027	- 60						:	Ę	.086	.20	3.3
Z. Marrines, STAM (MOS 8 BMOS) Term (M)	Z Mumera I. MG Total Million Total Million <thtotal million<="" th=""> Total Million</thtotal>					019	036	120		029	.035	040.	.050	OK K	0,00			
Title - B) With (MOS & BIMOS) With (MOS & BIM	Tex. a) Tex. a) Tex. a) Tex. a) Total (10)	5	L COK b 1 MB	_	_	.023	.043	0.00	090	038	.047	930.	970.	020	0400	10.	080.	4.1
Up is let; Up is let; <thup is="" let;<="" th=""> Up is le; Up is le;</thup>	Up brief	;	(Ea _ A)	\vdash	+	280	.057	.053	.077	620		9.0. 9.	9 :	084	.0074	20.0	29	
Image: Service of the rest (21 Princip) 0071 0022 034 035 035	Norme Other beak (10 m) OT OT <th></th> <th>Xe a</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th><u>=</u>]</th> <th>=</th> <th>.011</th> <th>.067</th> <th></th> <th>- C</th>		Xe a										<u>=</u>]	=	.011	.067		- C
Zerk to Zerk Cerk to Zerk<	Zekk Extending Cost		16K 8 84K		6200.	.022		150										3
Z Boolin Level (27 molecand) (28 molecand) (28 molecand) (28 molecand) (29 molecand) (21 molecand) (21 molecand) (22 molecand) (23 molecand)	Z Board Control Contro Control Control		64K 10 256K		4.0	034		020	ŝ	9 G	.054	083	10	073	0140			
Mercula (D0000) Mercula (D00000) Mercula (D000000) Mercula (D000000) Mercula (D000000) Mercula (D0000000) Mercula (D00000000) Mercula (D0000000000000) Mercula (D000000000000000000000000000000000000	Mennels FOM FOM Exercise Construction Construction </th <th>10</th> <th>Bindler 7 1 MB</th> <th></th> <th>023</th> <th>.0<u>5</u>3</th> <th></th> <th>.071</th> <th></th> <th></th> <th>.085</th> <th>4.</th> <th>17</th> <th>2</th> <th></th> <th>044 700</th> <th>0.08</th> <th>4.</th>	10	Bindler 7 1 MB		023	.0 <u>5</u> 3		.071			.085	4 .	17	2		044 700	0.08	4.
Up to 1K, it is to 6K, it is to 6K	Unter Main Production Calify and the production <thcalify and="" production<="" th="" the=""> Calify</thcalify>	,			3	1992		E.	2	<u>-</u> 6	5	5 2	.27		5.0	500	*	8 , (
R Description Constraint	Provinsion Control of the province Control of the province <thcontrol of="" province<="" th="" the=""></thcontrol>		Up to first								S	Ę	ę		013	15		c
Perk to 256K Car bit with a 256K Car bit with a 256 Cor c	Price Description Dot <				010			-										?
P. Marmon Bi MB (id) Pin Dip (id) Pin D	Rumment Standage (a) (a) <t< th=""><th></th><th></th><th></th><th>20.0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>.13</th><th></th><th></th><th>220</th><th>:</th><th></th></t<>				20.0								.13			220	:	
Up to Text Up to Text <thut text<="" th="" to=""> Up to Text Up to Te</thut>	Up to text Up to text Call to text Cal	2		(40 Pin DIP)	620													0.0
Iffic b 64X (24 Phn Dip) :005 :023 :043 :041 :060 :056 :054 :070 :033 :053 </th <th>Interest Interest Interest</th> <th>!</th> <th>Up to 16K</th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>11</th> <th>53</th> <th>5 N 0</th>	Interest	!	Up to 16K				1									11	53	5 N 0
Ock to 256K Control of a contr	Ock to 256K Control of the		16K 1 64K							E						18	65	24
WHSC Monolecting CMOS (40 Phn Dip) 033 074 065 015 10 11	WHSC Monolecting CMOS (w) Pin Dip/ (33) (37) (36) (33) (11) (16) (13) (14) (16) (13) (14) (16) (13) (14) (16)		64K 15 256K					054					10					
Galance Calance Calance Colore Color Color <thcolor< th=""> <thcolor< th=""> Color<th>Galance (= -1.5) Calance (= -1.5) Colore and/or Passive (18 Pin Dip) (19 10 Active and/or Passive (18 Pin Dip) (19 10 Active and/or Passive (18 Pin Dip) (10 0.034 (04 6 (13 0.033 (14 3.0) (13 0.033 (14 3.0) (13 0.033 (14 3.0) (13 0.033 (14 3.0) (13 3.0) (13 3.0) (14 3.0) (13 3.0) (14 3.0) (13 3.0) (14 3.0) (13 3.0) (14 3.0) (14 3.0) (14 3.0) (16 Pin Dip) (012 3.0) (013 0.052 (013 0.052 (013 0.057 (13 0.051 (14 3.0) (14</th><th>6</th><th>VISC LENGER + 7175</th><th></th><th></th><th></th><th></th><th>065</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>~ *</th><th>0, (</th></thcolor<></thcolor<>	Galance (= -1.5) Calance (= -1.5) Colore and/or Passive (18 Pin Dip) (19 10 Active and/or Passive (18 Pin Dip) (19 10 Active and/or Passive (18 Pin Dip) (10 0.034 (04 6 (13 0.033 (14 3.0) (13 0.033 (14 3.0) (13 0.033 (14 3.0) (13 0.033 (14 3.0) (13 3.0) (13 3.0) (14 3.0) (13 3.0) (14 3.0) (13 3.0) (14 3.0) (13 3.0) (14 3.0) (14 3.0) (14 3.0) (16 Pin Dip) (012 3.0) (013 0.052 (013 0.052 (013 0.057 (13 0.051 (14 3.0) (14	6	VISC LENGER + 7175					065									~ *	0, (
1 br 10 Active and/or Passive (8 Pin Dip) .019 .034 .046 .039 .052 .065 .068 .11 .12 .034 .040 .030 .31 .31 .31 .31 .31 .31 </th <th>1 br 10 Active and/or Passive (8 Pin Dip) .019 .034 .046 .039 .052 .065 .068 .11 .12 .076 .019 .040 .086 1 br 100 Active and/or Passive (16 Pin Dip) .025 .047 .066 .052 .065 .068 .11 .12 .076 .019 .040 .086 1 br 100 Active and/or Passive (16 Pin Dip) .025 .047 .067 .051 .091 .091 .091 .076 .019 .040 .086 Cash Dipin (Ea 1.4) to manu .025 .057 .068 .079 .091 .097 .15 .17 .11 .025 .073 .14 .1 Cash Dipin (Ea 1.4) .0085 .011 .067 .057 .068 .073 .080 .15 .11 .11 .025 .073 .14 .1 Destinements .086 .012 .091 .097 .057 .084 .073 .080 .12 .11 .17 .1 .1 .1 .1 .1 .1 .1</th> <th>-</th> <th>Gala MARC (Fa = 1 K)</th> <th></th> <th></th> <th>IJ</th> <th>Ŀ</th> <th></th> <th>Ĭ</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>2</th> <th>7) (7 N (0</th>	1 br 10 Active and/or Passive (8 Pin Dip) .019 .034 .046 .039 .052 .065 .068 .11 .12 .076 .019 .040 .086 1 br 100 Active and/or Passive (16 Pin Dip) .025 .047 .066 .052 .065 .068 .11 .12 .076 .019 .040 .086 1 br 100 Active and/or Passive (16 Pin Dip) .025 .047 .067 .051 .091 .091 .091 .076 .019 .040 .086 Cash Dipin (Ea 1.4) to manu .025 .057 .068 .079 .091 .097 .15 .17 .11 .025 .073 .14 .1 Cash Dipin (Ea 1.4) .0085 .011 .067 .057 .068 .073 .080 .15 .11 .11 .025 .073 .14 .1 Destinements .086 .012 .091 .097 .057 .084 .073 .080 .12 .11 .17 .1 .1 .1 .1 .1 .1 .1	-	Gala MARC (Fa = 1 K)			IJ	Ŀ		Ĭ								2	7) (7 N (0
Elements (8 ** 0 D) .019 .034 .046 .039 .052 .065 .088 .11 .12 .076 .011 .040 .086 11 100 Active and/or Passive (16 Pin DiP) .025 .046 .039 .052 .065 .088 .11 .12 .076 .019 .040 .086 Charles from the file 1.4 .025 .047 .067 .053 .079 .091 .097 .15 .17 .11 .025 .073 .14 1 Case Digital (Ea 1.4) to the moder to the mode .057 .057 .064 .060 .073 .080 .12 .1 .1 .1 .1 .1 .1 .1 .1 .010 .011 .025 .073 .074 .075 .073 .074 .075 .075 .075 .075 .075 .075 .075 .075 .075 .075 .075 .075 .075 .075 .075	Elements Elements (3 + 10 M) .019 .034 .046 .039 .052 .065 .068 .11 .12 .076 .011 .040 .086 1 to 100 Active and/or Passive Elements (16 Pin Dip) .025 .047 .067 .059 .052 .065 .088 .11 .12 .019 .040 .086 Case Digital (Ele 1.4) to month .025 .047 .058 .079 .091 .097 .15 .17 .11 .025 .073 .14 1 Case Digital (Ele 1.4) to month .0085 .057 .057 .064 .060 .073 .080 .12 .11 .17 .1 .17 .1 .1 .1 .1 .1 .1 .025 .073 .074 .0 .091 .073 .076 .073 .076 .071 .17 .1 .1 .1 .1 .1 .1 .1 .1 .011 .073 .071 <t< th=""><th></th><th>1 to 10 Active and/or Passiva</th><th></th><th></th><th></th><th>2</th><th>522</th><th>S</th><th></th><th>1</th><th>1</th><th></th><th></th><th></th><th></th><th>S</th><th></th></t<>		1 to 10 Active and/or Passiva				2	522	S		1	1					S	
Ite Number Pressive (16 Pin DIP) .025 .047 .067 .008 .11 .12 .076 .019 .040 .086 Channet Densitie All the Number Andre Passive (16 Pin DIP) .025 .047 .067 .091 .097 .15 .17 .11 .025 .070 .086 Gava Diplia (Ea 1.4) b 1000 Active and/or Passive (36 Pin DIP) .0085 .057 .084 .060 .073 .080 .14 1 1 b 1000 Active and/or Passive (36 Pin DIP) .0085 .057 .084 .060 .073 .080 .12 .11 .1	Ite Iuv Active and/or Passive (16 Pin DiP) .025 .047 .067 .008 .11 .12 .076 .019 .040 .086 Chara Diplati (Ea = 1,4) the team in .025 .047 .067 .058 .079 .091 .097 .15 .17 .11 .025 .073 .14 1 Casa Diplati (Ea = 1,4) .0085 .001 .057 .058 .079 .091 .097 .15 .17 .11 .025 .073 .14 1 I bi 1000 Active and/or (36 Fin DiP) .0085 .027 .084 .060 .073 .080 .12 .11 .17 .3 1001 Ib 10,000 Active and/or (64 Pin PGA) .014 .053 .10 .10 .15 .11 .13 .14 .17 .3 Passive Elementa (64 Pin PGA) .014 .053 .10 .10 .15 .11 .13 .17 .17 .3 .14 .17 .3 .14 <th></th> <th>Elements</th> <th></th> <th>•</th> <th>•</th> <th>•</th> <th></th>		Elements		•	•	•											
Concert Date and the Footment Concert Date and the Footment <thconcert and="" footment<="" part="" th="" the=""> <thconc< th=""><th>Concertioner interview Concertioner interview <thconcertenvinterview< th=""> Concertionervinterview</thconcertenvinterview<></th><th></th><th>Elements</th><th>(16 Pin DIP)</th><th></th><th></th><th></th><th></th><th>•</th><th>·</th><th></th><th></th><th>•</th><th></th><th></th><th></th><th>200</th><th></th></thconc<></thconcert>	Concertioner interview Concertioner interview <thconcertenvinterview< th=""> Concertionervinterview</thconcertenvinterview<>		Elements	(16 Pin DIP)					•	·			•				200	
1 to 1000 Active and/or Passive (36 Fin DIP) .0085 .030 .057 .057 .084 .060 .073 .080 .12 .11 .025 .073 .14 .17 .10 .1001 to 10,000 Active and/or (64 Pin PGA) .014 .053 .10 .10 .15 .11 .14 .12 .11 .0085 .071 .17 .17 .17	1 1000 Mathematics Passive (36 Fin DiP) .0065 .057 .057 .084 .060 .073 .080 .11 .17 .17 .17 .17 .17 .17 .17 .17 .17 .17 .17 .17 .17 .17 .11 .11 .17 .17 .17 .17 .17 .17 .17 .17 .17 .10 .10 .15 .11 .13 .17 .17 .17 .17 .17 .17 .17 .17 .17 .17 .11 .13 .11 .11 .10 .17 .17 .17 .17 .11 .13 .14 .22 .21 .11 .17 .17 .17 .17 .11 .13 .14 .22 .21 .11 .17 .17 .17 .11		(Detect Chess and May Rever to 100 mill)		•	•	•	•		-						•		6
(36 Fin DIP) .0085 .030 .057 .057 .084 .060 .073 .080 .12 .11 .0085 .071 .17 (64 Pin PGA) .014 .053 .10 .10 .15 .11 .3	(36 Fin DIP) .0085 .030 .057 .057 .084 .060 .073 .080 .12 .11 .0065 .071 .17 (64 Pin PQA) .014 .053 .10 .10 .15 .11 .13 .14 .22 .21 .014 .13 .31		1 to 1000 Active and/or Barrier											•			•	1.3
(64 Pin POLA) .014 .053 .10 .10 .084 .060 .073 .080 .12 .11 .0065 .071 .17	(84 Pin PGA) .014 .053 .10 .10 .084 .060 .073 .080 .12 .11 .0065 .071 .17 .13 .14 .22 .21 .014 .13 .31 .31		Elements	(36 Fin DIP)														
			Paratve Flamant	(64 Plo PGA)		-												
																		0 .0

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

Quality Factors - #O	0	Group	MIL STORY SCREWTER Rive St	Point Valuation
Description		ç	TM 1010 (Temperature Cicle, Cont 8 Minimum and TM 2001 (Constant	
Class S Categories:		-	Accidention, Cond B Minimum) and TM 6004 (or 5008 (or Hybrids) (Frail Becincials (of Temp Externel) and TM 1014 (Seal Teet, Cond A, B, or C) and TM 2009 (External Vesual)	8
1. Procured In full accordance with MRL-M-38510, CM	Class S requirements.		TM [010 (Temperature Cycle, Cond B Minimum) or TM 2001 (Constant Acceleration Cond B Minimum)	
2. Procured in full accordance with MIL-I-38536 and Appendix B theratic (Class U)	d Appendix B thereto (Class U).	.25 2.	TM 9004 (or 5009 for Hybrida) Final Electricals @ Temp Extremes) and TM 1014 (Seat Test, Cont A, B, or c) and TM 2009 (Erlamal Visual)	37
3. Hybrids: (Procured to Class S requirements (Ouslity Level K) of MiL-H-38534.	ality Level K) of Mil.:H-38534.		Pre Burn in Electricats TM 1015 (Burn-in B-Lavel) and TM 5004 (or 5009) for Hybrids (Pott Burn-in Electricate & Tenor Entrement)	(emel 8) 85
Cima B Categories:			TM 2020 Pind (Paricie impact Noise Detection)	
1. Procured In full accordance with MIL-M-38510, Class B requirements.	Class B requirements.	чо 	TM 5004 (or 5008 for Hybrids) Final Electricals @ Tempinature	11 (Note 1)
2. Procured In full accordance with MilL+36536, (Class Q).	Name ().	1.0		
3. Hybrida: Procued to Class B requiremente (Quality Level H) of Mit.++38:34.	aity Level H) of Mit_H-38634.	ю ;	TM 2010/17 (Internal Visual)	
			IM 1014 (Seal Test, Cond A, B, or C)	7 (Note 2)
		•••	TM 2012 (Radiography)	~
Fully compliant with all requirements of paragraph 1.2.1 of Mill-STD-865 and procred to a Mill drawing. DESC densities of other covernment accorded documentation. (I) we not	(MilSTD-863 and procured to a of documentation (flowe not	2.0	TM 2009 (External Vieual)	7 (Note 2)
include hybrids. For hybrids use custom screening section below.	ion below.	10	TM 5007/5013 (GaAs) (Water Accepturce)	-
		=]	TM 2023 (Nen-Destructive Band Pull)	-
			RO = 2 + <u>E Point Valuations</u>	
Leeming Factor - R			and a population of the second statement of the second	
Years in Production, Y	۶			
4. V	2.0	ŝ	Point valuation only assigned I used independent of Groups 1, 2 or 3.	
'n	1 .0	j ei 4	Four vauvation only analysed a ward tradeencer of Groups 1 or 2. Sequencing of lasts which groups 1, 2 and 3 must be followed. The source by the strip care 7.2 and 1.5 and 3 must be followed.	
	1.5	- uci	Nonharmetic parts should be used only in controlled environments (i.e., Gg and other	vd other
	÷		emperature/humidity controlled environments).	
		EXAMPLES:		
2			Mg. puriforms Group 1 test and Class B burn-in: $\pi_{Q} = 2 + \frac{87}{60+30} = 3.1$	
x _t = .01 exp(5.3535Υ)		~	Mg. Performs internal visual teet, seal test and final electrical test: π_0 = 2 +	RQ = 2 + 7+7+11 = 5.5
Y - Years cenaric device hore has been in word when	a control of a		Other Commercial or Unknown Screening Levels	5 10
International for any second a man a s				

APPENDIX A: PARTS COUNT

.

A-4

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

MIL-HDBK-217F

MIL-HDBK-217	7F
--------------	----

APPENDIX A: PARTS COUNT

Part Type Env. + Q_B Q_F Q_H N_S N_J A_{CC} </th <th></th> <th></th> <th>Generic Fallure</th> <th>Fallure</th> <th>Rute - Ag</th> <th>, (Failurea/10⁶</th> <th></th> <th>Hours) for</th> <th></th> <th>Discrete Semiconductors</th> <th>sonducto</th> <th>578</th> <th></th> <th></th> <th></th> <th></th>			Generic Fallure	Fallure	Rute - Ag	, (Failurea/10 ⁶		Hours) for		Discrete Semiconductors	sonducto	578				
Turnshin $T_{1}(V_{2}) + 50$ 60 65 75 75 DIODES 00036 0233 0233 011 022 024 054 054 054 054 054 054 054 054 054 054 054 055 11 017 023 013 011 023 014 013 11 11 054 054 054 054 055 11 11 015 11 11 11 11 22 055 11 11 25 25 11 14 11 11 25 25 11 14 11 25 25 11 14 26 26 11 14 26 25 26 11 14 26 25 26 11 14 26 25 26 11 14 26 25 26 11 14 11 14 26 25 25 26 11	Section	Part Type		9 7	ଞ		Z	ې ۲	AIF	∛	7	Mey	5	¥	تح	5
DIODES Control Control <thcontrol< th=""> <thcontrol< th=""> <thco< th=""><th></th><th></th><th>T_J (°C) → 50</th><th>8</th><th>8</th><th>60</th><th>65</th><th>R</th><th>22</th><th>8</th><th>8</th><th>75</th><th>60</th><th>8</th><th>75</th><th>8</th></thco<></thcontrol<></thcontrol<>			T _J (°C) → 50	8	8	60	65	R	22	8	8	75	60	8	75	8
Clemental Purposes Analog 0036 028 049 043 110 022 21 Fast Recovery Purr. Rectifier 065 52 013 011 027 024 054 Fast Recovery Purr. Rectifier 065 52 013 011 027 024 054 Power Rectifierd 065 52 039 023 040 023 17 17 Power Rectifierd 0023 023 040 035 062 17 17 Virabiant Rupressect/Variation 0023 023 040 035 062 17 17 Virabiant Rupressect/Variation 0033 024 039 035 062 17 11 25 Virabiant Ruprent Requires 0033 024 039 55 20 11 14 Virabiant Rup Virabiant 00056 040 056 062 073 062 052 Virabiant Rup Virabiant 00051 011 31 31 <th></th> <th>DIODES</th> <th></th>		DIODES														
Swelching 00094 0073 011 027 024 054 Feat Recovery Pwr., Rectliner 068 52 99 78 19 17 317 Power Rectliner Schoutky Pwr., 0029 022 039 035 084 073 16 Transient Suppressor/Wation .0029 023 024 035 084 073 16 Vehage Rei/Fag. (Ansianche .0033 024 039 035 084 073 16 Vehage Rei/Fag. (Ansianche .0033 024 039 035 082 073 16 Vehage Rei/Fag. (Ansianche .0033 .024 .039 .035 082 073 16 Vehage Rei/Fag. (Ansianche .0033 .024 .039 .025 086 .11 12 23 Scholdy Barrier and Pehri .047 .11 .31 .23 26 20 13 23 Unrent and Back .0043 .010 .026 .001	6.1	General Purpose Analog	.0036		049	.043	01 .	092	5	20	4	-17	.0018	.076	23	ر ت
Fast Recovery Pwr. Rectllier 065 52 80 78 19 17 37 Power Rectllier's Schottly Pwr. 0028 022 039 033 023 073 16 Transient Suppressor/Variator 0028 022 039 035 084 075 17 Voltage Rai/Fag. (Avaianche 0033 024 039 035 084 075 16 Voltage Rai/Fag. (Avaianche 0033 024 039 035 084 075 17 25 Silmpati (i 5 36 GHz) 366 2.0 065 060 14 11 26 Silmpati (i 5 36 GHz) 36 2.1 1.5 4.6 2.0 23 GunnGluk Effect 31 .76 2.1 1.3 .16 .14 Immediati (5 36 GHz) .004 .0056 .001 .0028 .001 .16 .11 .20 .25 Contact power stressona .004 .0053 .001 .01 .14	6.1	Switching	0000		.013	.011	.027	.024	.054	.054	12	340.	211000.	.020	090	4
Power fleatliew's Schottlyy Pwr. 0028 022 039 034 062 073 16 Transient Suppresent/windor 0029 023 040 035 084 075 17 Voltage Rai/Flag. (Availanctie 0033 024 035 084 075 17 Voltage Rai/Flag. (Availanctie 0033 024 035 080 014 11 25 Voltage Rai/Flag. (Availanctie 0033 024 035 080 114 11 25 Voltage Rai/Flag. (Availanctie 0033 024 035 080 114 11 25 Sunduluit 31 7/6 2.1 1.5 4.6 2.0 23 032 Universit 0.04 0.066 0.02 0.01 001 23 002 203 032 032 032 Universit 0.04 0.066 0.06 0.01 014 114 11 23 Vorind K 0.04 0.063<	6.1	Fast Recovery Pwr. Rectilier	.065		68	.78	1.9	1.7	3.7	3.7	8.0	3.1	200.	4.1	4.1	28
Transient Supresser/Variation .0020 .023 .040 .035 .064 .075 .17 Voltage Rai/Pheg. (Availanctio .0033 .024 .039 .035 .062 .066 .15 and Zerren) .0033 .024 .039 .035 .062 .066 .15 And Zerren) .0035 .040 .066 .066 .14 .11 .25 Current Regulation .0056 .040 .066 .066 .14 .11 .25 Si Impeti f (s .36 GHz) .31 .76 .21 1.15 4.8 .2.0 .25 OutmBluik Effect .31 .76 .21 1.15 4.8 .2.0 .23 UnimBluik Effect .31 .76 .21 1.15 .14 .14 UnimBluik Effect .31 .76 .21 1.15 .12 .23 .02 .02 UnimBluik Effect .011 .001 .021 .011 .23 .23	6.1	Power Rectilier/ Schattly Pwr.	.0028		620.	9 84	.082	.073	.16	.16	.35	.13	.0014	090	.18	1.2
Voltage Flair/Flag. (Availance)a .0033 .024 .036 .003 .024 .036 .066 .066 .14 .11 .25 and Zaves) currer Flagutacic .0036 .040 .066 .060 .14 .11 .25 Currer Flagutacic .0036 .040 .066 .060 .14 .11 .25 Stimpent (f s.35 GHz) .86 2.8 8.9 5.6 2.0 11 .14 .11 .25 Unreflexit Effect .31 .76 2.1 1.5 4.6 2.0 2.0 11 .14 .11 .25 Unreflexit Effect .31 .31 .33 .33 .30 .30 .30 .30 Schottly Barrier and Point .0043 .010 .023 .020 .033 .023 .023 .023 Vinterior .030 .012 .04 .14 .11 .14 .14 Vinterior .030 .012 .041	6.1	Transient Suppressor/Varistor	.0029		.040	.035	.084	.075	-17	.17	36	4	.0015	.062	.18	1.2
and Zener) and Zener) Current Flequetar .0056 040 .065 .060 .14 .11 .25 Si Impetit (f ≤ 35 GHz) .86 2.8 8.0 5.6 20 11 14 Si Impetit (f ≤ 35 GHz) .86 2.8 8.0 5.6 20 11 14 GunwBulk Effect .31 .76 2.1 15 4.6 2.0 23 Hurwelland Buck .004 .0066 .0026 .0019 .056 .002 .25 .25 FIN .0043 .010 .0229 .066 .021 .063 .26 .04 .14 .18 .22 Schotity Bartier and Point .047 .11 .31 .23 .68 .30 .33 .24 Contact geometratic stated .0043 .010 .022 .024 .14 .18 .22 Varador .0005 .0011 .0017 .0037 .0030 .025 .064 <td< th=""><th>6.1</th><th>Voltage Rel/Reg. (Avalanche</th><th>.0033</th><th></th><th>030</th><th>.035</th><th>.082</th><th>.066</th><th>51.</th><th>.13</th><th>.27</th><th>.12</th><th>.0016</th><th>090</th><th>.16</th><th>1.3</th></td<>	6.1	Voltage Rel/Reg. (Avalanche	.0033		030	.035	.082	.066	5 1.	.13	.27	.12	.0016	090	.16	1.3
Current Pagelation 0056 040 066 14 11 25 Si impati (1 < 35 GHz) 86 2.8 8.9 5.6 20 11 14 Guine/Buik Effect .31 .76 2.1 1.5 4.6 2.0 2.5 Guine/Buik Effect .31 .76 2.1 1.5 4.6 2.0 2.5 Turnel and Back .004 .004 .006 .0026 .001 .055 .023 .023 PIN .028 .068 .11 .31 .23 .68 .30 .31 FIN .028 .0043 .010 .029 .021 .063 .30 .31 Varactor .0043 .010 .029 .021 .063 .30 .31 Varactor .0043 .010 .023 .021 .064 .14 Ityristor/SCR .00043 .010 .029 .064 .14 .14 .14 .14		and Zener)														
SI Impetif (r ≤ 36 GHz) 86 2.8 8.9 5.6 20 11 1.4 QuinvBuik Effect .31 .76 2.1 1.5 4.6 2.0 2.5 Turnel and Back .004 .0066 .0026 .0019 .066 .025 .022 PIN .028 .064 .011 .14 .41 .18 .22 PIN .028 .063 .010 .026 .021 .063 .02 Schootky Barnier and Porit .047 .11 .31 .23 .68 .30 .37 Schootky Barnier and Porit .047 .11 .31 .23 .68 .30 .37 Schootky Barnier and Porit .047 .11 .31 .23 .68 .30 .37 Varactor .0043 .010 .028 .021 .023 .023 .024 .14 Varactor .0043 .010 .028 .021 .063 .023 .024 .14 Thyritelor/SCR .0043 .0010 .026 .021	6.1	Current Regulator	.0056		.066	080	.14	Ę	8	.22	46	.21	.0028	5	2 8	2.1
Gunr/Bulk Effect .31 .76 2.1 1.5 4.6 2.0 2.5 Turnel and Back .004 .0066 .0026 .0019 .068 .023 .022 PIN .028 .066 .11 .11 .31 .23 .68 .03 PIN .047 .11 .31 .23 .68 .30 .37 Schotity Barrier and Point .047 .11 .31 .23 .68 .30 .37 Schotity Barrier and Point .043 .010 .029 .021 .063 .023 .30 .37 Vanactor .0043 .010 .029 .021 .063 .023 .30 .37 Vanactor .0043 .010 .029 .021 .063 .14 THWISSTORS .17 .31 .31 .32 .28 .32 .36 .33 THWISSTORS .17 .001 .001 .0017 .0017 .0037	6.2	Si Impett (1 < 35 GHz)	. 86		8.0	5.6	20	Ŧ	Ξ	36	ଷ	4		18	67	350
Turnel and Back .004 .006 .0026 .0019 .068 .025 .032 PIN .028 .066 .19 .14 .41 .18 .22 Schotily Barrier and Point .047 .11 .31 .23 .68 .30 .37 Schotily Barrier and Point .047 .11 .31 .23 .68 .30 .37 Varactor .0043 .010 .029 .021 .063 .028 .034 Varactor .0043 .010 .029 .021 .063 .028 .034 Varactor .0043 .010 .029 .021 .063 .028 .034 Varactor .0025 .020 .034 .030 .072 .064 .14 TRINISSTORS .000412 .0025 .042 .069 .053 .028 .03 TRINISSTORS .0144 .009 .014 .0017 .0017 .0037 .0037 .0036	6.2	Gunn/Buik Effect	.31	.76	2.1	1.5	4.6	2.0	5.5 2.5	4 .5	7.6	7.9	16	3.7	2	2
PIN .028 .066 .19 .14 .41 .18 .22 Schotiky Barrier and Point .047 .11 .31 .23 .66 .30 .37 Contact goo wet s1 satisfier .047 .11 .31 .23 .66 .30 .37 Contact goo wet s1 satisfier .0043 .010 .029 .021 .063 .028 .034 Varactor .0043 .010 .029 .021 .063 .028 .034 Thyritabol/SCR .0025 .020 .034 .030 .072 .064 .14 THyritabol/SCR .0025 .020 .034 .030 .072 .064 .14 THWRING .0011 .0017 .0037 .030 .072 .064 .14 THANSISTORS .14 .13 .15 .12 .26 .14 NewerNPUPIN (1 < .200 MHz) .0011 .0017 .0037 .0037 .0036 .12 .26 <tr< th=""><th>6.2</th><th>Turnel and Back</th><th>.004</th><th>9600.</th><th>.0026</th><th>.0019</th><th>.058</th><th>.025</th><th>.032</th><th>.057</th><th>700.</th><th>.10</th><th>200.</th><th>.048</th><th>15</th><th>1.2</th></tr<>	6.2	Turnel and Back	.004	9600.	.0026	.0019	.058	.025	.032	.057	700.	.10	200.	.048	15	1.2
Schoolity Barriar and Point .047 .11 .31 .23 .68 .30 .37 Contact goo wtr s (s ss Get) .0043 .010 .029 .021 .063 .028 .034 Varactor .0043 .010 .029 .021 .063 .028 .034 Varactor .0043 .010 .029 .021 .063 .028 .034 Varactor .00043 .010 .029 .034 .030 .072 .064 .14 TRANSSTORS .00015 .0201 .0017 .0037 .0047 .0047	6.2	Pin	.028	.068	.19	1 4	14.	1 8	ផ	94.	89.	F.	.014	4 6.	1.1	8.5
Contact zoo wet s i s 35 Geta	6.2	Schottky Barrier and Point	.047	F.	.a.	.23	89 .	30	37	.67	1.1	1.2	.02:1	56.	1.8	14
Variation .0043 .010 .029 .021 .063 .026 .034 .14 Trivinstor/SCR .0025 .020 .034 .030 .072 .064 .14 TravissToris .00015 .0011 .0017 .0037 .064 .14 ITAVISISTORS .00015 .0011 .0017 .0037 .064 .14 Power NITVURNIP (1 < 200 MHz) .00015 .0011 .0017 .0037 .0030 .0067 Power NITVURNIP (1 < 200 MHz) .0014 .099 .16 .15 .12 .26 SI FET (1 > 400 MHz) .014 .099 .16 .15 .34 .28 .62 SI FET (1 > 400 MHz) .014 .099 .16 .14 .1 .26 .76 Galve FET (1 > 400 MHz) .014 .099 .26 .64 .1 .61 .76 Galve FET (1 > 400 MHz) .014 .099 .26 .61 .76 .76 .76 <t< th=""><th></th><th>Contact (200 MHz s1 s 36 GHz)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		Contact (200 MHz s1 s 36 GHz)														
Thyriatou/SCR .0025 .020 .034 .030 .072 .064 .14 TRANSISTORS .00015 .0011 .0017 .00017 .00017 .0037 .0067 NPWPNIP (1 < 200 MHz) .00015 .0011 .0017 .0037 .0037 .0067 Power NPWPNIP (1 < 200 MHz) .0057 .042 .069 .16 .15 .12 .26 SI FET (1 > 400 MHz) .014 .099 .16 .15 .12 .28 .62 SI FET (1 > 400 MHz) .014 .099 .24 .64 .47 1.4 .61 .76 GeAe FET (P > 100 mW) .17 .51 1.5 1.0 3.4 1.8 2.3 Uniunction .016 .12 .20 .18 .23 .55 .56 P < 1W) .016 .12 .21 .3 .23 .53 .56 .60 .75 Uniunction .016 .12 .20 .18 .23	6.2	Varador	.0043		.029	.021	063	028	.034	.062	Ę	Ę	.0022	.052	.17	1.3
TPAVSISTORS TPAVSISTORS NPWINIP (1 < 200 MHz) .00015 .0011 .0017 .0037 .0030 .0057 Power NPWINIP (1 < 200 MHz) .00057 .042 .069 .15 .12 .26 Power NPWINIP (1 < 200 MHz) .0057 .042 .069 .063 .15 .12 .26 Power NPWINIP (1 < 200 MHz) .014 .099 .16 .15 .34 .28 .62 SI FET (1 > 400 MHz) .014 .099 .24 .64 .47 1.4 .61 .76 SI FET (1 > 400 MHz) .099 .24 .64 .47 1.4 .61 .76 GeAe FET (P > 100 mW) .17 .51 1.5 .10 3.4 1.8 2.3 Unijunction .016 .12 .20 .18 .45 .56 .66 P < 1M) .016 .12 .20 .16 .46 1.4 .60 .75 GeAe FET (P > 100 mW) .016 .12 .20 .18 2.3 .65 .66 Unijunction .0	6.10	Thyristor/SCR	.0025		.034	030	.072	.064	2	4	.31	.12	.0012	.053	.16	1.1
TRANSISTORS Intensistors 00015 0011 0017 0037 0030 0067 NPWPNP (1 < 200 MHz) .00557 .042 .069 .053 .15 .12 .26 Power NPWPNP (1 < 200 MHz) .00577 .042 .069 .16 .15 .12 .26 Power NPWPNP (1 < 200 MHz) .014 .099 .16 .15 .34 .28 .62 SI FET (1 > 400 MHz) .014 .099 .16 .15 .34 .28 .62 .76 SI FET (1 > 400 MHz) .014 .099 .16 .15 .34 .28 .62 .76 Gade FET (1 > 400 MHz) .016 .17 .51 1.9 2.5 8.5 4.5 5.6 Gade FET (1 > 200 mW) .42 1.3 3.9 2.5 8.5 4.5 5.6 Unijunction .016 .12 .20 .18 .23 .61 .45 .56 .60 .76 P < 1W) .16 .12 .21 .21 .23 .61 .76 .66 .6																
NPWTNIP (1 < 200 MHz)		TRANSISTORS														
Power NPV/PNP (1 < 200 MHz)	6.3	NPWPNP (1 < 200 MHz)	.00015		7 1 00.	.0017	1.600.	0030	.0067	.0060	.013	9500.	C20000.	.0027	1700.	.056
SI FET (I ≤ 400 MHz) .014 .099 .16 .15 .34 .28 .52 SI FET (I > 400 MHz) .014 .099 .24 .64 .47 1.4 .61 .76 SI FET (I > 400 MHz) .099 .24 .64 .47 1.4 .61 .76 GaeAe FET (P < 100 mW) .17 .51 1.5 1.0 3.4 1.8 2.3 GaeAe FET (P < 100 mW) .42 1.3 3.9 2.5 8.5 4.5 5.6 Unijunction .016 .12 .20 .18 .42 .36 .80 Pr Low Noise (I > 200 MHz, .094 .23 .53 .46 1.4 .60 .75	6.3	Power NPN/PNP (I < 200 MHz)	.0057	.042	.069	.063	.15	.12	.26	.23	50	នុ	.0029	H.	20	2.2
SI FET (I > 400 MHz) .099 .24 .61 .47 1.4 .61 .76 Gade FET (P < 100 mW) .17 .51 1.5 1.0 3.4 1.8 2.3 Gade FET (P < 100 mW) .17 .51 1.5 1.0 3.4 1.8 2.3 Gade FET (P < 100 mW) .42 1.3 3.9 2.5 8.5 4.5 5.6 Unijunction .016 .12 .20 .18 .45 5.6 Unijunction .016 .12 .20 .18 .45 .56 P < 1W) .064 .23 .63 .46 1.4 .60 .75	6.4	SI FET (1 \$ 400 MHz)	.014		.16	.15	.34	.28	ß	.53	1.1	51	.0069	.25	8 9.	5.3
Galve FET (P < 100 mW) .17 .51 1.5 1.0 3.4 1.8 2.3 Galve FET (P ≥ 100 mW) .42 1.3 3.9 2.5 8.5 4.5 5.6 Unijunction .016 .12 .20 .18 .42 .35 9.0 FF, Low Noise (1 > 200 MHz, P < 100 .094 .23 .63 .46 1.4 .60 .75	6 .9	SI FET (1 > 400 MHz)	660	24	6 4	47	1.4	.61	.76	1.3	2.3	2.4	.040	1.2	3.6	8
Gave FET (P ≥ 100 mW) .42 1.3 3.1) 2.5 8.5 4.5 5.6 Unijunction .016 .12 .20 .18 .42 .36 .80 RF, Low Noise (I > 200 MHz, P < .094 .23 .63 .46 1.4 .60 .75	9 .9	GeAs FET (P < 100 mW)	.17	.51	1.5	1.0	3. A	1.B	2.3	5.4	9.2	7.2	.080	2.8	Ξ	8
Uniunction	6 .8	GaAs FET (P ≥ 100 mW)	45	1.3	3.0	2.5	8.5	4.5	5.6	13	ស	8	21	6.9	27	160
RF, Low Noise (1 > 200 MHz, .064 .23 .63 .46 1.4 .60 .75 P < 1W)	<u>6</u> .5	Unijunction	.016		.20	18	.42	.36	8.	74	1.6	8	6700.	.31	88.	6.4
	9.9 9	RF, Low Noise (I > 200 MHz, P < 1W)	9 0. 7 0	.23	.63	46	1.4	8	.75	1.3	2.3	2.4	.047	1.1	3.6	28
HF, Power (P 2 1W) .074 .15 .37 .29 .81 .29	6.7	RF, Power (P≥1W)	.074	5	.37	.29	.81	.29	.37	.52	8 8.	160.	66.	68.	8.6	18

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

A-5

		Caller Failure Marie		2								5			
Section	Part Type	Erw.→ G _B	ъ г	₽	s NS	z	AIC A	AIF	چ ۲	4	ARW	\$	¥	z	J
		T _J (°C)→ 50	8	53	60	65	75	75	8	8	75	ន	65	75	8
,	OPTO-ELECTRONICS														
6.11	Photodelector	.011	.029	.083	.059	.18	.084	F.	.21	.35	34	.0057	. 15	51	3.7
6.11	Opto-Isolator	.027	070.	50	41.	.43	.20	.25	.49	83	80	.013	35.	i, L	8.7
6.11	Emitter	.00047	.0012	.035	.0025	0077	.0035	.0044	.0086	015	.014	.00024	.0063	.021	15
6.12	Aphanumeric Display	.0062	.016	.045	.032	1 0	.046	.058	11.	.19	18	.0031	.082	.28	2.0
6.13	Laser Diccle, GeAs/Al GeAs	5.1	16	64	32	110	58	72	1 00	170	230	2.6	87	350	2000
6.13	Laser Diode, In GaAs/In GaAsP	8 .	8	8	S	190	<u>6</u>	130	180	300	004	4.5	150	600	3500
2	TUBES	ŝ	Section	(includes	Section 7 (includes Receivers, CRTs, Cross Field Amplifiers, Klystrons, TWTs, Magnetrons)	CRTs, Cr	xes Fleid A	mplitiens, k	lystrons, T	WTs, Mag	netrons)			ļ	
ø	LASERS	\$ 	Section	80											

APPENDIX A: PARTS COUNT

	Disci	Discrete Semiconductor Quality Factors - $\pi_{\boldsymbol{\Omega}}$	ictor Quality	Factors - TO		
Section Number	Part Types	NYLINY	JANTK	JAN	LOWBY	Plastic
6.1, 6.3, 6.4, 6.5, 6.10, 6.11, 6.12	Non-RF Devices/ Opto-Electronics*	QZ.	1.0	2.4	5.5	8.0
6.2	High Freq Diodes	.50	1.0	5.0	25	50
6.2	Schottky Diodes	.50	1.0	1.8	2.5	
6.6, 6.7, 6.8, 6.9	RF Transistors	.50	1.0	2.0	5.0	i
6.13	Laser Dioders		#Q = 1.0 Hermetic Package = 1.0 Nonhermetic with F = 3.3 Nonhermetic witho	1.0 Hermetic Package 1.0 Nonhermetic with Facet Coating 3.3 Nonhermetic without Facet Coating	0 Nting	

MIL-HDBK-217F

									•								
Hold 30001 00001 00001 000111 00011 00011 <th< th=""><th></th><th>Style</th><th>MIL-P</th><th>Env. → GB TA(°C) → 30</th><th>9.8</th><th>Sz Å</th><th>s 2 9</th><th>л С С</th><th></th><th>SS IF</th><th>Se ₹</th><th>28</th><th>Ne sa</th><th>8 P</th><th>7 4</th><th>z s</th><th>೮೪</th></th<>		Style	MIL-P	Env. → GB TA(°C) → 30	9.8	Sz Å	s 2 9	л С С		SS IF	Se ₹	28	Ne sa	8 P	7 4	z s	೮೪
Controlind Finite Natural Finite Natrand Finite Natural Finite Natural Finite Natural Fi	-	БЪ	39008	.00050	.0022	1200.	.0037	.012	.0052	.0065	.016	.025	.025	.00025	9600.	.035	36
Finnetication R1 3001 C002 C02 C02 C02 C02 C02 C02 C02 C03 C03 C03 C03 C03 C03 C03 C04		8	:	.00050	2200.	.0071	7600.	.012	.0052	.0065	.016	025	.025	.00025	8600	.035	36
Finn matured Finn matured Finn matured Finn Market Rt ZBB4 D012 D021 D011 D012 D021 D011 D011 <thd011< th=""> D011 D011 <thd< td=""><th></th><th>E.</th><td>30017</td><td>.0012</td><td>.0027</td><td>.011</td><td>.0054</td><td>020.</td><td>.0063</td><td>.013</td><td>.018</td><td>033</td><td>.030</td><td>.00025</td><td>.014</td><td>044</td><td>69</td></thd<></thd011<>		E.	30017	.0012	.0027	.011	.0054	020.	.0063	.013	.018	033	.030	.00025	.014	044	69
Hr., Nark (C. c. M) PM Size Dirt Math Size Dirt Dirt <thdirt< th=""> <thdirt< th=""> Dirt</thdirt<></thdirt<>		æ	22684	.0012	.0027	.011	.0054	.020	.0063	.013	.018	033	030	.00025	.014	440.	69
Fm Fm<		æ	55182	.0014	.0031	.013	.0061	.023	.0072	.014	.021	960	.034	00028	.016	.050	.78
Horizona Encriptional Finite Neurosci, Accurate Finite Neurosci, Power Finite Neurosci, Vaniska Finite Neurosci Vaniska Finita Neurosci Pinite Neurosci Vaniska Finite Neurosci Vaniska Fini		Ē	10509	.0014	1600.	.013	.0061	.023	.0072	.014	.021	850	9 89.	00028	.016	.050	.78
Finneticity R2 ENUI DDD2 DDD3 DD1 DD3 DD1 <		8	11804	.012	.025	.13	.062	.21	078	9	.19	.24	32	0900	.18	.47	8 .2
Werenood Accurate Accurate Merenood Rep 3005 0.065 0.16 10 0.45 15 17 20 29 0066 13 27 Werenood Accurate Merenood Rep 3007 0.015 0.016 0.11 0.017 26 0.71 26 0.71 26 0.71 26 0.026 0.13 27 28 2000 13 27 28 2000 13 27 28 28 26 26 27 28 26 26 27 28 26		R	83401	.0023	.0066	160.	.013	.055	022	.043	.077	.15	.10	.001	.055	.15	1.7
Memonand Accurate Memonand Accurate Memonand Accurate Memonand Accurate Memonand Power Rel Spool Dist Dist <thdist< th=""> Dist Dist<!--</td--><th></th><th>Æ</th><td>3005</td><td>.0085</td><td>.018</td><td>₽.</td><td>.045</td><td>.16</td><td>.15</td><td>-11</td><td>30</td><td>38</td><td>26</td><td>0068</td><td>.13</td><td>.37</td><td>5.4</td></thdist<>		Æ	3005	.0085	.018	₽.	.045	.16	.15	-11	30	38	26	0068	.13	.37	5.4
Winneural Press Meth 38001 014 001 16 011 26 012 21 23 23 20 24 2042 21 25 Winneural Press HW 25 013 026 15 013 026 15 013 026 13 013 24 2003 13 23 Winneural Press HM 25 013 026 014 15 014 018 12 24 25 0000 13 23 Winneural Press HM 25 013 026 03 16 17 18 11 13 21 23 23 14 17 19 10 21 24 23 24 26 26 25 26 <th></th> <th>2</th> <td>8</td> <td>.0085</td> <td>.018</td> <td>1.</td> <td>.045</td> <td>.16</td> <td>.15</td> <td>-17</td> <td>30</td> <td>88.</td> <td>.26</td> <td>0068</td> <td>.13</td> <td>.37</td> <td>5.4</td>		2	8	.0085	.018	1 .	.045	.16	.15	-17	30	88.	.26	0068	.13	.37	5.4
Woreword, Power HV 25 013 223 15 010 24 065 13 16 35 36 0036 19 35 Weeword, Power EEH 30000 010 010 010 15 04 086 12 24 25 0001 19 37 Weeword, Power EEH 30010 010 026 045 15 044 086 12 24 25 0001 19 37 Weeword, Veekle ETH 2864 005 32 14 11 16 17 24 033 25 16 26 26 27 24 033 25 16 26 26 27 24 033 25 16 26 16 26 17 23 24 16 23 24 23 24 23 24 23 24 23 26 16 26 26 26 26		E	39007	.014	.031	.16	.077	.2 6	620	15	19	39	.42	.0042	21	.62	9 .4
Weissenset Memound Consoline Consoline Memound		¥	8	.013	820.	.15	070.	.24	.066	13	.18	.35	38	9003.	1 0	%	9 .6
Weinstruction Thermistic Thermis	3	Æ	39009	0000	.018	960.	.045	.15	.044	.088	.12	.24	.25	0040	.13	.37	5.5
Thomsand Interesting Mineround, Variable Mineround, Mineround, Mineronund, Mineronund, Mineround, Mineround, Mineround, Mineround,	3	¥	18646	00800.	.018	960	.045	.15	.044	.088	.12	5	.25	0740	.13	.37	5.5
Wirewound, Vertable FIT 30015 025 035 16 58 16 26 35 50 11 013 52 16 Wirewound, Vertable FT 27208 025 055 35 16 58 16 26 35 53 16 17 013 52 16 Wirewound, Vertable FT 12204 33 70 29 12 35 53 71 93 22 16 17 03 52 16 35 Wirewound, Vertable FX 3002 115 35 31 12 55 11 91 20 17 20 20 16 26 17 20 16 17 20 17 20 16 17 20 16 17 20 16 17 20 16 17 20 16 17 20 16 17 20 16 17 20 <td< td=""><th>7</th><th>HH</th><td>23648</td><td>.065</td><td>.32</td><td>1.4</td><td>۲.</td><td>1.6</td><td>17.</td><td>6.1</td><td>1.0</td><td>2.7</td><td>2.4</td><td>.032</td><td>1.3</td><td>3.4</td><td>62</td></td<>	7	HH	23648	.065	.32	1.4	۲.	1.6	17.	6.1	1.0	2.7	2.4	.032	1.3	3.4	62
Witnemound, Vanishie, Minnemound, Vanishie, Minnemound, Vanishie, Minnemound, Vanishie, Minnemound, Vanishie, Minnemound, Vanishie, Minnemound, Vanishie, Minnemound, Vanishie, Minnemound,	-	Æ	38015	.025	.055	.35	.16	58	.16	.26	.35	50.	1.1	.013	3	1.6	24
Wreewound, Vanishe, Freewound, Vanishe, Semiprocrision FR 12934 33 70 29 12 35 53 71 9.8 20 16 11 33 Wreewound, Vanishe, Semiprocrision FK 19 .15 .35 31 1.2 5.4 1.9 2.9 0.075 '<		표	27208	.025	320.	.35	.16	58	.16	.26	35.	3 8.	1.1	.013	3	1.6	24
Wirewound, Veniable, Samprecian Werewound, Veniable, Werewound, Veniable, Werewound, Veniable, Samprecian Werewound, Veniable, FPP FA 15 35 31 1.2 5.4 1.9 2.8 0.075 ° ° 0.075 ° ° ° 0.075 ° ° ° ° 0.075 ° ° ° 0.075 ° ° 0.075 ° ° 0.075 ° ° ° 0.075 ° ° 0.075 ° </td <th>-</th> <th>£</th> <td>12034</td> <td></td> <td>£7.</td> <td>0.7</td> <td>2.9</td> <td>12</td> <td>3.5</td> <td>5.3</td> <td>7.1</td> <td>9.8</td> <td>ន</td> <td>.16</td> <td>:</td> <td>33</td> <td>510</td>	-	£	12034		£7.	0.7	2.9	12	3.5	5.3	7.1	9.8	ន	.16	:	33	510
Wirewound, Veriation Sempretation FK 39002 :15 :35 31 12 54 19 28 · 9.0 075 · · 9.0 075 · · · · · 9.0 075 · · · · · 9.0 075 · <th></th> <th>¥</th> <td>18</td> <td>.15</td> <td>.35</td> <td>3.1</td> <td>1.2</td> <td>5.4</td> <td>1.9</td> <td>28</td> <td>•</td> <td>•</td> <td>0.0</td> <td>.075</td> <td>•</td> <td>•</td> <td>•</td>		¥	18	.15	.35	3.1	1.2	5.4	1.9	28	•	•	0 .0	.075	•	•	•
Wirewound, Variable, Prevent Prevent FP 22 .15 34 29 1.2 50 1.6 24 • 76 076 • • Prevent Prevent RH 38035 .033 .10 .50 .21 .87 .19 .27 .52 .79 1.5 .017 .79 .22 Norwisewound, Variable RV e4 .050 .11 1.1 .45 1.7 2.8 4.6 7.5 .31 .32 .31 Composition, variable RV e4 .050 .11 1.1 .45 1.7 2.8 4.6 7.5 .31 .33 .30 .30 .30 .31 .32 .33 .36 .33 .36 .31 .3 .34 <th>· · · · ·</th> <th>ž</th> <td>39002</td> <td>.15</td> <td>.35</td> <td>3.1</td> <td>1.2</td> <td>5.4</td> <td>1.9</td> <td>28</td> <td>•</td> <td>•</td> <td>9.0</td> <td>.075</td> <td>•</td> <td>•</td> <td>٠</td>	· · · · ·	ž	39002	.15	.35	3.1	1.2	5.4	1.9	28	•	•	9.0	.075	•	•	٠
Monviroendurd, versible RIR 38035 .033 .10 .50 .21 .87 .19 .27 .52 .79 1.5 .017 .79 22 Versible RJ 22007 .033 .10 .50 .21 .87 .19 .27 .52 .79 1.5 .017 .79 22 Norwiseeurud, Versible RV 94 .050 .11 1.1 .45 1.7 2.8 4.6 7.5 3.3 .025 1.5 4.7 Norwiseeurud, Versible RO 38023 .043 .15 .35 .13 .39 .76 1.6 2.5 3.1 2.2 3.4 Flim, Variable RW RO .38023 .068 .16 .36 .33 .36 .31 .33 .32 .33 .32 .34 .31 .34 Flim, Variable RM RV .36 .36 .36 .36 .3 .36 .3		8	8	.15	34	2.9	1.2	5.0	1.6	24	•	•	7.6	.076	•	•	•
Moniferentiat RJ 22007 .033 .10 .50 .21 .87 .19 .27 .52 .79 1.5 .017 .79 22 Variable Variable Variable Composition, Variable Procision RV 94 .050 .11 1.1 .45 1.7 2.8 4.6 7.5 3.3 .025 1.5 4.7 Nomiseround, Variable RO 38023 .043 .15 .75 .39 .78 1.8 2.8 2.5 .021 1.2 3.7 Thin, Variable RO 38023 .048 .16 .75 .39 .78 1.8 2.8 2.5 .021 1.2 3.7 Thin, Variable ROC 2023 .048 .16 .76 .39 .78 1.4 2.2 2.3 0.24 1.2 3.4 Thin, Variable Routility .16 .76 .36 .73 .14 2.2 2.3 .024 1.2 3.4		R	38035	.033	9.	8	.21	.87	.19	.27	ß	67.	1.5	.017	67.	2.2	35
Composition, Variable RV 94 .050 .11 .15 .17 2.8 4.6 7.5 3.3 .025 1.5 4.7 Monvieweund, Weinble RO 38023 .043 .15 .75 .33 .39 .78 1.8 2.8 25 .021 1.2 3.7 Nonvieweund, Weinble RVC 23023 .048 .16 .76 .35 1.3 .39 .78 1.8 2.8 25 0.21 1.2 3.7 FBm, Variable RMC 23285 .048 .16 .76 .35 .13 .35 .72 1.4 2.2 2.3 .024 1.2 3.4 T Not Normally used in his Environment .76 .36 .72 1.4 2.2 2.3 .024 1.2 3.4 C 1 2.6 .35 .1.3 .36 .72 1.4 2.2 2.3 .024 1.2 3.4 2.1 7<	_	2	22097	.033	10	8	.21	.87	.19	.27	3	6 2.	1.5	.017	8 7.	2.2	35
Norwiseeound, Veriable Practision RD 38023 .043 .15 .75 .39 .78 1.8 2.8 2.5 .021 1.2 3.7 Veriable Practision RVC 23235 .048 .16 .76 .35 .13 .35 .72 1.4 2.2 2.3 .024 1.2 3.4 Thr. Variable RVC 22285 .048 .16 .76 .35 .72 1.4 2.2 2.3 .024 1.2 3.4 Thr. Variable Romally used in this Environment .76 .35 .13 .35 .72 1.4 2.2 2.3 .024 1.2 3.4 T. A - Default Component Ambert Temperature (rC)			5	.050	F.	1.1	.45	1.7	2.8	4.6	4.6	7.5	3.3	.025	1.5	4.7	87
Flam, Variable RMC 232895 .048 .16 .76 .35 .72 1.4 2.2 2.3 0.24 1.2 3.4 TE: 1 - Not Normally used in file Environment 2 7 1.4 2.2 2.3 0.24 1.2 3.4 TE: 1 - Not Normally used in file Environment 2 T Established Raliability Styles MIL-SPEC Lower 2) T _A = Default Component Amblent Temperature (°C) 2 2 MIL-SPEC Lower	ž	8	39023	.043	.15	.75	.35	1.3	39	38.	1.8	2.8	2.5	.021	1.2	3.7	64
1) * Not Normally used in this Environment 2) T _A = Default Component Amblent Temperature (*C) 2) T _A = Default Component Amblent Temperature (*C) Quality 5 20 20 20 20 20 20 20 20 20 20 20 20 20	E	NC MC	23285	.048	.16	.76	36.	1.3	36.	.72	4.	2.2	2.3	.024	1.2	3.4	52
Established Reliability Syles S Established Reliability Syles M ML.SPEC		ued in this E xonent Amb	invironment lent Tempera	iture (°C)													
S R P N M ML-SPEC							Establishe	d Reliability						-			
					-+ ≩	S	œ (;	<u>م</u>		+ ≥!	ML-SPE	0	A	-7			

APPENDIX A: PARTS COUNT

A-7

APPENDIX A: PARTS COUNT

Section 10.1 Pape 10.1 Pape	Part Type or	ſ															
<u> </u>	Uleectric	Style	MILC	Erv.→ G _B T _A (°C)→30	ი ჩ. მ	°≦ ₹	° z°₹	₽°\$	AIC 55	Ањ 55	Sr.	₽R	1 218	ሌ 8	₹ *\$	3-36	៹៹
-	Paper, By-Pass	8	ม	.0036	.0072	.033	.018	.055	520.	8 .	070	£.	88	.0018	440	5	51
-	Paper, By-Pass	3	12869	6000.	.0087	.042	022	0/0	.035	.047	19	35	.13	.002	.056	0	2.5
10.2 Papa Hr	Paper/Plastic, Feed- through	5	11603	.0047	9600.	.044	.034	£ 20.	030	.040	1 60.	.15	11.	.0024	.058	9	27
10.3 Pape	Paper/Plestic Film	ß	14157	.0021	.0042	.017	.010	030	.0088	.013	.026	048	ş	0100.	22	.063	÷
10.3 Pape	Paper/Plastic Film	8	19978	.0021	.0042	.017	.010	030	.0088	.013	.026	048	40.	0010	220	.063	
10.4 Met	Mehalized Paper/Plastic	₩	39022	.0029	.0058	.023	.014	.041	012	.018	.037	990 .	9 9.	.0014	032	.086	1.5
10.4 Me	Metalized Plastic/ Plastic	9	18312	.0029	9500.	.023	.014	.041	.012	.018	.037	990.	090	.0014	.032	880.	1.5
10.5 Meta	Metalized Paper/Plastic	₿	55514	.0041	800 .	.042	.021	.067	.026	048	.086		1 0	0200.	054	51.	2.5
10.6 Met	Metallized Plastic	₹	83421	.0023	.0092	.019	.012	033	9600.	.014	834	.053	840.	.001	026	.07	5
10.7 MIC	MICA (Dipped or Molded)	H	39001	.0005	.0015	1600.	.0044	.014	.0068	0095	.054	069	18.	.00025	.012	.046	45
10.7 MIC	MICA (Dipped)	₹	Ś	.0005	.0015	1 600	.0044	.014	.0068	.0085	.054	690'	.031	.00025	.012	.046	2 4 5
10.8 MIC	MICA (Button)	8	10950	.018	.037	.19	.094	.31	.10	41.	74.	8	\$.	1000.	.25	8 9.	:
	:	£	23269	20003.	96000.	.0059	.0029	1600.	.0044	.0062	.035	.045	020.	.00016	.0076	030	8
	2	Շ	11272	20003	98000	0059	0029	1004	.0044	.0062	.035	.045	020	.00016	.0076	0:00	8
10.10 Cen	Cerumic (Gen. Purpose)	ð	11015	.0036	.0074	.034	0 10.	.056	.015	.015	.032	.048	770.	.0014	040	.13	2.3
	Cenuric (Gen. Purpose)	Б <u>у</u>	39014	.0036	.0074	.034	.019	.056	.015	.015	.032	0.48	770.	.0014	0 70.	.13	2.3
10.11 Cen	Cennic (Temp. Comp.)	8	ิส	8/000.	.0022	.013	.0056	023	.0077	.015	.053	1 2	940.	60000	.017	.065	68
10.11 Cen	Cerumic Chip	8	55681	87000.	.0022	.013	.0056	.023	.0077	.015	.053	.12	340.	60003	.017	.065	6 8
	Tantalum, Solid	F 3	39003	.0018	6003	.016	1600.	028	1600.	.011	.034	.057	.065	.00072	8	99 0.	D . F
·	Tantatum, Non-Solid	చ్	39006	.0061	.013	.069	620.	Ę	.031	.061	.13	%	18	.0030	69 0.	Ŗ	4.0
	Fantalum, Non-Solid	ರ	3965	.0061	.013	.069	8 50.	F	.031	.061	£1.	8	.18	0030	99 0.	8	4.0
	Aluminum Oxide	Ð	39018	.024	.061	.42	18	3	46	.55	2.1	2.8	1.2	.012	40	1.7	21
-	Aluminum Dry	R	62	020.	.081	5 8	24	83	52	88.	4.3	5.4	2.0	.015	89.	2.8	8
	Variabie, Ceramic	5	5	80	27	1.2	۲.	2.3	69.	1.1	6.2	12	4.1	.032	1.0	5.0	39
	Variabie, Piston	£	14409	.033	.13	.62	.31	83	.21	.28	2.2	3.3	2.2	.016	6 8.	3.2	37
10.18 Vente	Variabie, Air Trimmer	5	8	080	33	1.6	.87	3.0	1.0	1.7	6.9	9	6 .1	.032	2.5	8.8	<u>8</u>
10.19 Vari	Variable, Vacuum	ខ	23183	0.4	5.1	6.7	3.6	13	5.7	10	8	8	ស	ଝ	•	•	:

ž P

MIL-SPEC 9.0 10

3.0

Established Reitablity Styles R P M .10 .30 1.0

S

Quility **P**

A-8

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

APPENDIX A: PARTS COUNT

		, I		8	ŗ	ž	ŝ	2	<u>0</u>	u č	22	2	Ň	ቻ	ž	ź	5
			TA CCH 30	8	\$	45	4	45	55	55	20	R	55	. 8	- 5	55	9
-	NDUCTIVE DEVICES			l													
	Low Power Pulse XFMR	7-21038	ب ب	0035	62 0.	010	.019	.065	.027	.037	041	.052	5	0018	.053	₽.	2.3
	Audio XFMR	T-27			9 4 0	.097	938	EI.	3 50.	620.	.081	10	2	3000.	Ŧ	16	4.7
1.1	High Pwr. Pulse and Pwr.	1-27			.16	46.	.13	.45	-21	.27	.35	.45	.82	.011	.37	1.2	2
111		T.ESEN1		800		6	5	2	{	1	:	:	1				
	DC Calle Errord or						<u>.</u>	20.	2	R,	<u>8</u>	.42	8 8.	.014	42	1.2	19
	Montant	50000	-	·	6/00	R.	1600.	8	.01	.015	.016	.022	.052	.00083	.25	670	-
11.2	RF Coils, Variable	C-15305		.0033	.015	046	018	90	20	5	033		ç	4. ¥VČ	2	ų Ŧ	č
t	ROTATING DEVICES										3	Ę		3	5		v v
12.1	Motors			1.6	2.4	3,3	2.4	3.3	11	11	31	5	• •	31	•	-	•
12.2	Synchros			.07	8	1.5	2	2.2		-	. 0	5 \$		- 4			9
12.2	Rechers			E	8	22	1.0	5			÷ ÷	a ä	- 4 			::	8 \$
	ELAPSED TIME					i I	2		ł	?	2	2	P.	8	0.7	=	5
	METTERS																
12.3	ETHAC			₽	ଛ	8	R	180	ន	8	160	8	8	50	9	CARC	•
12.3	ETM-Inverter Driver			15	8	<u>8</u>	105	R R	22	8	240	375	380	7.5	210	22	•
13.3	ETM-Communitor DC			ą	8	8	280	120	200	8	640	, e	and t	? F	993	15.20	•
	RELAYS														8		
5	General Purpose			.13	.28	21	1.1	3.8	1.1	4	-	10	7 0	ARC	5	ç	•
	Contactor, High Current			¥.	58 .	6 .9	3.6	12	3.4	1	6 9	5	8	16	; =	2 6	•
	Latching			.13	58	21		3.8	1	-	-		12	2	. v - o	; ;	•
13.1	Reed			F	2	1.8	8			- -						2 6	•
13.1	Thermal, Bi-meter			8	8		10			4 6	 i -	3		5	20		•
13.1	Meter Movement			8		1			3 7	• •	, ;	2	2 9	::	23	3 :	•
	Solid State			9 a	<u>;</u> -						2	± :	a 2	Į	5	2	•
0 5	Hotor and Solid Case			? S	4 4	D C F C		0 I		9	4	5	9.2	.16	4	13	280
	Time Deiny			Ŗ	ņ	5	3.0	Ċ.	6.0	9.5	Ŧ	16	12	Ŗ	6.0	17	ğ
Γ	SWITCHES																
	Toggie ar Pushbutton			010	0030	810.	0800.	(20)	010	018	013	600	940	ŝ	0.55	067	+
11.2	Sensitive	S-8805		.15	ŧ	2.7	1.2	4.3	5	2.0				100) r	è e	1
14.3	Rotary Waler	3- 3786		33	8	5.0	2.6			. a		0 C C	3 #		5	5	
14.4	Thurtbeheal	\$-22710		8.	1.7	Ģ	5	16	4	5) e 	; 5	? g	2	, ;	3 3	
	Circuit Breaker, Thermal	C-8383		H.	នុ	1.7	6		; 9	<u>-</u>		: 2	3 2			9 N	
14.5	Circuit Breaker,	C-55629		090	.12	05	4	9	9	2	2 9	: £	4 8		0 N		Èà
	Magnetic					2	2	2	ł	Ş	Ŗ		6.9	33.	<u>.</u>	7	Ž
	CONNECTORS																
	CICOMINARCINARIA		0		0.14	Ę	.069	8	8 50.	86().	នុ	40	.37	1900.	.16	.42	6.1
	Coexist				.015	13	.075	.21	9 80.	10	នុ	32	36	.900	.16	4	~
15.2	Printed Circuit Board		o.		.021	.055	.035	₽.	85 0.	F.	.085	.16	6 1.	.0027	078	12	3.4
15.3	Connector IC Sockets				ME	200	010	ŝ	1.0	004							
					8		75.	ŝ	610.	.023	.021	.025	0.48	.00097	.027	Q.0.	1.3
	Assembles (PCBs)				F.		69	.27	.27	4	.85	1.5	1.0	.027	5 3.	4.1	27

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

A-9

APPENDIX A: PARTS COUNT

			Generi	Generic Fallure Rate, $\lambda_{\mathbf{g}}$	Rate, A		res/10 ⁶	(Failures/10 ⁶ Hours) for Miscellaneous Parts	r Miscell	aneous 1	Parts					
Section	Part Type Dielectric	, T	Env.→ G _B	5	₹ى	NS NS	P	ې ۲	A IF	2	7	Mer	ب ر	±	13	J
•			¹ A (°C)→ 30	ą	45	Q	45	55	55	R	R	3	De De	4	55,	18
	SINGLE CONVECTIONS															
17.1	Hand Solder, w/o Wrapping		.0026	.005/2	.018	010.	620.	.010	.016	.016	.021	540.	.0013	620.	.062	1.1
12.1	Hand Solder, wWrapping		.00014	.00028	86000	.00056	.0015	.00056	.00084	.00084	0011	2200	700 00 .	.0013	.0034	.059
12.1	Crimp		.00026	.00052	0018	.0010	0020	0010	.0016	.0016	.0021	0042	.00013	6200 .	.0062	Ę
17.1	PrevA		.000050	.0001000.	.()00350	.0002000	000550	.00200	.000300	.006300	.0004000	008000	.00025	000450	001200	021000
17.1	Solderless Wrap		.000035	200000.	.000025	.000014	600000	.000014	.000021	.000021	.000028	. 000056	0000018	.000031	10000	.0015
17.1	Clip Termination		.00012	.00024	.00084	.00048	.0013	.00048	.00072	.00072	96090	.0019	90000	.001	.0028	.050
	Reflow Solder		.000069	.000138	.000483	.000276	000759	000276	000414	000414	000552	001104	000035	000621	001656	02898
	MEIEKS, PANEL												1			
18 .	DC Arrender or Voltmeter	M-10304	60.0	0.36	23	÷	3.2	2.5	3.8	5.2	6 .6	5.4	0.099	5.4	NA.	N/A
1 8 .1	AC Ammeter or Voltmeter	M-10304	0.15	0.61	3.8	1.8	5.4	4.3	6.4	8.9	11	9.2	0.17	9.2	NA.	NA N
19.1	Quertz Crystels	C-3096	.032	960.	32	9	5	.38	5	۶.	06	.74	.016	5	0.1	â
8	Lamps, Incandescent, AC		3.8	7.B	12	12	ŝ	16	16	19	ន	ő	2.7	â	ន	ŝ
Ŕ	Lampe, Incandescent, DC		5	26	38	38	51	51	51	5	2	2	0.0	51	11	350
	ELECTRONIC FLITERS															
21.1	Ceramic-Ferrite	F-15733	022	.044	.13	.089	Ŗ	.15	8	.24	53	24	.018	.15	33	2.6
21.1	Discrete LC Comp.	F-15733	.12	.24	.72	4 8	1.1	.84	1.1	1.3	1.6	1.3	.0'96	84	1.8	*
21.1	Discrete LC & Crystal Comp.	F-18327	.27	-54	1.6		5.4	1.9	2.4	3.0	3.5	3.0	.22	1.9	4.1	8
ลี	FUSES		.010	.020	080	050.	Ę	080	.12	.†5	18	16	800	ę	5	;

A-10

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

Section #	Part Type	Estaonsned Reliability	MIL-SPEC	Non-MIL.
11.1, 11.2	Inductive Devices	.25*	1.0	10
12.1, 12.2, 12.3	Rotating Devices	N/A	N/A	N/A
	Relays, Mechanical	.60	3.0	0.6
	Relays, Solid State and Time Delay (Hybrid &	N/A	1.0	4
	Solid State)			
14.1, 14.2	Switches, Toggle, Pushbutton, Sensitive	N/A	1.0	20
	Switches, Rotary Wafer	N/A	1.0	50
	Switches, Thumbwheel	N/A	1.0	10
	Circuit Breakers, Thermal	N/A	1.0	8.4
15.1, 15.2, 15.3	Connectors	N/A	1.0	2.0
	Interconnection Assemblies	N/A	1.0	2.0
	Connections	N/A	N/A	N/A
	Meters, Panel	N/A	1.0	3.4
	Quartz Crystals	N/A	1.0	2.1
	Lamps, incandescent	N/A	N/A	NA
	Electronic Filters	N/A	1.0	2.9
	Fuses	N/A	N/A	A/A

APPENDIX A: PARTS COUNT

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

A-11

* Category applies only to MiL-C-39010 Coils.

		<u> </u>								a	1						
Comments		Voltage Stress = .7, Metallurgically Bonded	Contacts Voltage Stress = .7, Metalturgically Bonded	Contacts Voltage Stress = .7, Netallurgically Bonded	Contacts Metallurgically Bonded Contacts Voltege Stress = .7, Metallurgically Bonded	Contracts Metallurgically Bonded Contacts	Metallurgically Bonded Contacts	Rated Power = 1000W		Multiplier Application Voltage Stress = .7, Ritted Forward Current = 1 Amp	Vottage Stress = .5, Switching Application, Rated	Power = .5W Voltage Stress = .8, Linear Application, Flated	MOSFET, Small Signal Switching	LOW Noise Application, 1 ≤ f ≤ 10 GHz, input and Output Matching CW Application 5 GHr 1W Average Cuting Dourse	Input and Output Matching	Vottage Stress = .7, Rated Power = .5W	1 GHz, 100W, T _j = 130°C for all Environments, Voltage Stress = .45, Gold Metallization Pulsed Application, 20% Duty Factor, Pulse Width = 5ms, Input and Output Matching
πR							1.0	6 0 0 7 7 7		1.0	71.	5.5				77.	
۸ñ							1.0	000			.70	1.5	20	 			1.6
្ទ	\g Table	1.0	1.0	1.0	00	1.0	1.0		0.1	1.0							
S R	All Defaults provided with $\lambda_{\rm B}$.42	4.	42	1.0	1.0	1.0		1.0	2.5 .51	نې	54				66.	
٣	ults provi												C •	1.0			1.0
۳Ţ	All Defa																.36
ኇ		8600.	.001	.069	.0031 .003	.002	.003 4	.0023 .0081	.027	.0025 .0022	.00074	.00074	.012 .060	.13	.0083	.18	<u>80</u>
Part Type	MICROCIRCUITS	DIODES General Purpose Analog	Switching	Fast Recovery Power Rectifier	Transient Suppressor/Varistor Power Rectifier	Voltage Ref/Reg. (Avalanche & Zanar)	Current Regulator Si Inneat (S 35 GHz)	Tunnel and Back PIN	Schottky Barrier and Point Contact	Varactor Thyristor/SCR	TRANSISTORS NPN/PNP (1 < 200 MHz)	Power NPN/PNP (f < 200 MHz)	SI FET (I ≤ 400 MHz) SI FET (I > 400 MHz) Gada FET (D > 100 mm)	GaAs FET (P 2 100 mW)	Unijunction	RF, Low Noise, Bipolar (f > 200 MHz, P < 1W)	HF, Power (P ≥ 1W)
Section *	5.0	6.1	6.1	6.1	6.1	6.1	6.2 5 2	9 0 0 0 9 0 0 0	6.2	6.2 6.10	6.3	6.3	6 4 0 8	9 B.9	6.5	9.9	6.7

A-12

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

"RULESHELL" SHELL "LOW

01

THE WALLE LEAVE ALLOUGH COLORS

MIL-HDBK-217F

-

APPENDIX A: PARTS COUNT

Part Type λ_b π_T π_M π_S π_C π_A OPTO-ELECTRONICS.0055.0055.013Opto-laolator.0030.013.0023Photodetector.0030.0030.1.0.77Corbi-laolator.0030.00023.1.0.77Laser Diode,.1.0.77(π_P).77Laser Diode,5.651.0.77In/GaAwin GaAs5.651.0.77	ſ		Default	Parai	neters	for DI	screte	Default Parameters for Discrete Semiconductors	nducto	Or s
OPTO-ELECTRONICS .0055 Photodetector .0055 Photodetector .013 Opto-Isolator .013 Opto-Isolator .0023 Alphanumeric Display .0030 Laser Diode, 3.23 GaAs/Al GaAs 1.0 Laser Diode, 1.0 In/GaAs/In GaAs 5.65 In/GaAs/In GaAs 1.0	Section #	Part Type	ዯ	R T	۳	°".	မှု	۳A	ц.	
Opto-Isolator .013 Emitter .0030 Alphanumeric Display .00023 Laser Diode, .00030 GaAs/Al GaAs 3.23 Laser Diode,	Ę	OPTO-ELECTRONICS Photodetector	.0055							Phytotransistor
Alphanumeric Display .0030 1.0 .77 Laser Diode, 3.23 1.0 .77 GaAarAi GaAs (xp) .77 Laser Diode, 1.0 .77 In/GaAarIn GaAaP 5.65 1.0 .77 In/GaAarIn GaAaP (xp) .77	ĘĘ	Opto-Isolator Emitter	.013							Phototransistor, Single Device
GaAs/Al GaAs Laser Diode, (kp) In/GaAs/In GaAsP 5.65 1.0 .77 (kp)	215	Alphanumeric Display Laser Diode.	.0030			0		1		CCU 7 Character Segment Display
Laser Diode, 1.0 .77 In/GaAa/in GaAaP (rsp) (rsp)		GaAs/Al GaAs				(z b)		-		Version version remember or Environments with I
Laser Diode, 5.65 1.0 .77 In/GaAs/in GaAsP (rp)										Forward Peak Current = .5 Amps (π_{i} = .62)
(Tp)	13	Laser Diode, In/Gate/in_GeteD	5.65			1.0		11.		Duty Cycle = .6, Pr/Ps = .5 (rp = 1) GaAs/Al GaAs, Hermelic, for Environrinertis with T ,
Forward Peak Current = .5 Amps (rg - Duty Cycle = .6, Pr/Pa = .5 (rg = 1)						(d ¥)				> 75°C, assume T _J = 75°C,
Duty Cycle = .6, Pr/Ps = .5 (np = 1)										Forward Peak Current = .5 Amps (n ₁ = .62)
										Duty Cycle = .6, Pr/Pa = .5 (np = 1)
]									

APPENDIX A: PARTS COUNT

.

APPENDIX A: PARTS COUNT

A-14

																					volt, series) u.F. .	иЕ. ж. = 1	D L					ation
810	Comments	Voltace Streas = K 15 IIF				Vortage Stress = .5, .027 µF	Voltage Streas = .5, .033 µF	Voltage Stress = .5, .14 μF	Voltage Stress = .5, .14 µF	Voltage Streas = .533 uF	Voltade Stmss = 5, 14 IIF			ן אי וו		Voltage Strees = .5. 30 pF			ູ່ ເບີ		Voltage Stress = .5, 1.0 µF, .6 ohms/volt, series	resistance, π _{SR} = .13	Voltage Stress = .5, Foll, Hermetic. 20 µF. 7=	Voltage Stress = .5, Foll. Hermetic. 20 μ F π = 1	Voltana Strace _ 6 1700E		Voltage Stress = .5, 1600 µF		Voltage Suress =	1 1
	Rating	125	88	125	X	i t	3 \$	<u>8</u>	2 <u>2</u>	125	<u>1</u> 25	<u>5</u>	28	150	<u>5</u>	3	125	125	<u>8</u>	125	125		125	125	125	85		8 5	3 8	8
	чСV	0.1	1.0	1.0	1.0		2 C	<u>-</u>	0.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.	0.1		1.0	1.0	1.3	1.3	•			
	MIL-C-SPEC	25	12889	11693	14157	19978	3002	10010	21581	56514	83421	39001	'n	10950	23269	11272	11015	39014	ଝ	55681	50095		39006	3965	39018	62	ą	1400	92	23183
	Style	8	3	5	ß	8	2	ξ ₹	5	Æ	₫	R S	₹	8	£	5	ð	S S	8	88	5		ສ	ರ	g	8	5	58	!ច	8
Part Type or	Dielectric	Paper, By-Pass	Paper, By-Pass	Paper/Plastic, Feed-through	Paper/Plastic Film	Paper/Plastic Film	Metalilzed Paner/Plastic	Matalitzad Diasta/Diasta		Metallized Paper/Plastic	Metalized Plastic	MICA (Dipped or Molded)	MICA (Dipped)	MICA (Button)			Certamic (Cien. Purpose)	Certamic (Gen. Purpose)	Ceramic (Temp. Comp.)	Ceramic Chip			Tantalum, Non-Solid	Tantalum, Non-Solid	Aluminum Oxide	Auminum Dry	Variable Ceramic	Variable, Piston	Variable, Air Trimmer	Variable, Vacuum
Section	*	10.1	10.1	10.2	10.3	10.3	10.4			C. 01	10.6	10.7	10.7	10.8	10.9	6.01	10.10	0.10	1.0	1.0	21.21		10.13	10.13	10.14	10.15	10.16	10.17	10.18	10.19

APPENDIX A: PARTS COUNT

ſ						
Section	Part Type	MIL-SPEC	۳ ۲	"cyc	л ^г г	
11.1	INDUCTIVE Low Pwr. Pulsed, XFMR	MIL-T-21038				Max Bated Terror – 11000 AT _ 10
		MIL 7.07				
		17-1-7WA				Max. Rated Temp. = 130°C, ΔT = 10
1.1	High Pwr. Pulse and Pwr. XFMR, Fitter	MIL-T-27				Max. Rated Temp. = 130°C, ΔT = 30
11.1	RF Transformers	MIL-T-55631				Max. Rated Temp. = 130°C, ∆T = 10
11.2	RF Colls, Fixed or Molded	MIL-C-15305	-			Max. Rated Temp. = 125°C, AT = 10
11.2	RF Coils, Variable	MIL-C-15305	N			Max. Rated Terrin. = 125°C. AT = 10
12.1	ROTATING DEVICES Motors					t = 15 000 hours (Assumed Barlaneau Time)
12.2	Synchros					$T_{\rm F} = T_{\rm A} + 40$, Size 10 - 16, 3 Brushee
12.2	Resolvers					Te = T_A + 40, Size 10 - 16, 3 Brushes
12.3	Elapsed Time Meters (ETM) ETM-AC					Op. Temp/Rated Temp. = .5 (x- = .5)
12.3	ETM-Inverter Driver					Op. Temp/Rated Temp. = .5 (kr = .5)
12.3	ETM-Commutater DC					Op. Temp/Rated Temp. = .5 (%7 = .5)
13.1	RELAYS General Purpose		e	-	s	Max. Rated Temp. = 125°C , DPDT, MIL-SPEC, 10 Cycles/Hour,
		·				4 Amp., General Purpose, Balanced Armature, Resintive Load,
13.1	Contactor, High Current		n	-	ŝ	s = .5 Max. Rated Temp. = 125°C, DPDT, MilL-SPEC, 10 Cycles/Hour,
13.1	Latching		e	~~	Ś	600 Amp., Solenoid, Inductive Load, s = .5 Max. Rated Temp. = 125°C, MiL-SPEC, 4 Amp., Mercury Wetted,
13.1	Reed		-	2	ŵ	10 Cyres/Hour, DPUT, Resistive Load, s = .5 Max. Rated Temp. = 85°C, MiL-SPEC, Signal Current, Dry Reed, 20 Cycles/Hour SPST Reserved Load =
13.1	Thermal Bi-Metal		**	-	10	Max. Rated Temp. = 125°C, MitLSPEC, Bi-Metal, 10 Cycles/Hour, SPST, Inductive Load, 5 Amp., s = .5
13.1	Meter Movement		-	-	100	Max. Reted Temp. = 125°C, MiL-SPEC, Polarized Meter Movement, 10 Cycles/Hour, SPST, Resistive Load, s. = .5
13.2	Solid State	MIL-R-28750				No Defaults
4 S C F	Time Delay Hybrid and Solid State	MIL-R-13726		_		No Defaults

.

APPENDIX A: PARTS COUNT

1

A-16

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

MIL-HDBK-217F

	Part 1ype	MIL-SPEC	₹	5 5	ç	πcyc	ř	×ط	MIL-SPEC λ_{b} π_{U} π_{C} π_{cyc} π_{L} π_{p}
	SWITCHES								Comments
14.1	Toggle & Pushbutton		.00045		1.5	1.0	1.48		Snap-action, MIL-SPEC, ≤ 1 Cycle/Hour, Resistive Load, Current Stress = .5, DPST
14.2	Sensitive	MIL-S-8805	10			1.0	1.48		Actuation Differential > .002 inches, 1 Active Contact, Mit-SPEC, 5 1 Cycle/Hour, Resistive Load, Current Stress 5
14.3	Rotary Wafer	MIL-S-3786	.0074			õ	1.48		MIL-SPEC, Resistive Load, Current Stress = .5, 30 Cycles/Hour, 24 Active Contact
14.4	Thumbwheel	MIL-S-22710	ee.			1.0	1.48		MIL-SPEC, Resistive Load, .Current Stress = .5, S 1 Cycle/Hour. 6 Active Contacts
14.5	Circuit Breaker, Thermal	MIL-C-83383	.038	1.0	3.0				3PST, Not Used as a Power On/Off Switch
14.5	Circuit Breaker, Magnetic	MIL-C-55629	.020	1.0	3.0				3PST, Not Used as a Power On/Off Switch
15.1	CONNECTORS Circular/Rack/Panel							7.4	T _o = T _A + 10°C, Insert Material B, 3 Mating/
	:								Unmating Cycles per 1000 Hours, 40 Active Contacts, MiL-SPEC # _E
Г. о	Coaxia							4.1	T _o = T _A + 5°C, insert Material C, 3 Mating/ Unmating Cycles per 1000 Hours, 2 Active Contacts, MIL-SPEC _{xic}
15.2	Printed Circuit Board							7.4	T _o = T _A + 10°C, 3 Mating/Unmating Cycles per 1000 Hours, 40 Active Pins, MIL-SPEC π _i .
15.3	IC Sockets		.000.42					4.6	24 Active Contacts
16.1	Interconnection Assembles (PCBs)		.000041						Printed Wiring Assembly, 1000 Wave Soldered Functional PTHs, 3 Circuit Planes, No Hand Soldering, π _E

APPENDIX A: PARTS COUNT

A-17

		Default Parameters for Miscellaneous Parts	meters	for M	iscellar	eous Parts
Section	Part Type	MIL-SPEC	ዯ	۳u	πA	Comments
17.1	Connections					Defenter An Defenter
18.1	Meters, Panel					No Defaults
19.1	Quartz Crystals	MIL-C-3098	.032			50 MHz
20.1	LAMPS, INCANDESCENT AC Applications		5.4	.72	+	Rated Voltage 28 Volts, Utilization Rate .5, Atternating
20.1	DC Applications		5.4	.72	3.3	Rated Voltage 28 Volts, Utilization Rate .5, Direct Current
21.1	ELECTRONIC FL TERS Ceramic-Ferrite	MIL-F-15733	.022			MIL-SPEC
21.1	Discrete LC Comp	MIL-F-15733	.12			MIL-SPEC
21.1	Discrete LC & Crystal Comp.	MIL-F-18327	.27			Mil-SPEC
22.1	FUSES		.010			

APPENDIX A: PARTS COUNT

I

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

MIL-HDBK-217F

APPENDIX B: VHSIC/VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

This appendix contains the detailed version of the VHSIC/VLSI CMOS model contained in Section 5.3. It is provided to allow more detailed device level design trade-offs to be accomplished for predominate failure modes and mechanisms exhibited in CMOS devices. Reference 30 should be consulted for a detailed derivation of this model.

VHSIC/VHSIC-LIKE FAILURE RATE MODEL

λ _P (t)	-	$\lambda_{OX}(t) + \lambda_{MET}(t) + \lambda_{HC}(t) + \lambda_{CON}(t) + \lambda_{PAC} + \lambda_{ESD} + \lambda_{MIS}(t)$
λ _P (t)	æ	Predicted Failure Rate as a Function of Time
$\lambda_{ox}(t)$	=	Oxide Failure Rate
$\lambda_{MET}(t)$	=	Metallization Failure Rate
$\lambda_{HC}(t)$	=	Hot Carrier Failure Rate
$\lambda_{CON}(t)$	z	Contamination Failure Rate
λ _{pac}	#	Package Failure Rate
λ _{ESD}	*	EOS/ESD Failure Rate
λ _{MIS} (t)	H.	Miscellaneous Failure Rate

The equations for each of the above failure mechanism failure rates are as follows:

OXIDE FAILURE RATE EQUATION

$$\lambda_{\text{ox}} (\text{in F/10}^{6}) = \frac{A A_{\text{TYPEOX}}}{A_{\text{R}}} \left(\frac{D_{0_{\text{OX}}}}{D_{\text{R}}} \right) \left[(.0788 \text{ e}^{-7.7 \text{ t}_{0}}) (A_{\text{Tox}}) (e^{-7.7 \text{ A}_{\text{Tox}}t}) + \frac{.399}{(t+t_{0})\sigma_{\text{OX}}} \exp \left(\frac{-.5}{\sigma_{\text{OX}}^{2}} \left(\ln (t + t_{0}) - \ln t_{50} \right)^{2} \right) \right]$$

Total Chip Area (in cm²) Α

.77 for Custom and Logic Devices, 1.23 for Memories and Gate Arrays ATYPEOX

1

APPENDIX B: VHSIC-VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

		OXIDE FAILURE RATE EQUATION (CONTINUED)
A _R	=	.21 cm ²
D _{0ox}	=	Oxide Defect Density (If unknown, use $\left(\frac{X_0}{X_s}\right)^2$ where $X_0 = 2 \mu m$ and X_s is the feature size of the device)
D _R	=	1 Defect/cm ²
t _O	=	Effective Screening Time
	=	(Actual Time of Test (in 10 ⁶ hrs.)) * ($A_{T_{OX}}$ (at junction screening temp.) (in °K))*
A _{Tox}	-	Temperature Acceleration Factor, = $\exp\left[\frac{3}{8.617 \times 10^{-5}} \left(\frac{1}{T_{J}} - \frac{1}{298}\right)\right]$
		(where $T_J = T_C + \theta_{JC}P$ (in °K))
A _{Vox}	=	$e^{-192} \left(\frac{1}{E_{OX}} - \frac{1}{2.5}\right)$
Eox	=	Maximum Power Supply Voltage V _{DD} , divided by the gate oxide thickness (in MV/cm)
t _{50ox}	=	$\frac{1.3x10^{22} (\text{QML})}{\text{AT}_{\text{OX}} \text{AV}_{\text{OX}}} \text{(in 10}^{6} \text{ hrs.)}$
		(QML) = 2 if on QML, .5 if not.
σ _{ox}	Ξ	Sigma obtained from test data of oxide failures from the same or similar process. If not available, use a σ_{0x} value of 1.
t	2	time (in 10 ⁶ Hours)

1

.

4

-

APPENDIX B: VHSIC/VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

METAL FAILURE RATE EQUATION

$$\begin{split} \lambda_{\text{MET}} &= \left[\frac{A}{A_{\text{TVPE}MET}} \frac{D_{0}}{D_{\text{R}}} \quad (.00102 \text{ e}^{-1.18 \text{ t}}0)(A_{\text{TMET}})(\text{e}^{-1.18 A_{\text{TMET}}}t)\right] \\ &+ \left[\frac{.399}{(\text{t+}t_0)\sigma_{\text{MET}}} \exp\left(\frac{..5}{\sigma_{\text{MET}}^2} \left(\ln(t+t_0) \cdot \ln t_{50\text{MET}}^2\right)^2\right)\right] \\ A &= \text{Total Chip Area (in cm^2)} \\ A_{\text{TVPE}_{\text{MET}}} &= .88 \text{ for Custom and Logic Devices, 1.12 for Memory and Gate Arrays} \\ A_{\text{R}} &= .21 \text{ cm}^2 \\ D_{0\text{MET}} &= \text{Metal Defect Density (if unknown use } \left(\frac{X_0}{X_{\text{S}}}\right)^2 \text{ where } X_0 = 2 \,\mu\text{m} \text{ and } X_{\text{S}} \text{ is the feature size of the device}} \\ D_{\text{R}} &= 1 \text{ Detect/cm}^2 \\ A_{\text{TMET}} &= \text{Temperature Acceleration Factor} \\ &= \exp\left[\frac{..55}{8.617 \times 10^{-5}} \left(\frac{1}{\text{T}_{\text{J}}} + \frac{1}{298}\right)\right] \left(\text{T}_{\text{J}} = \text{T}_{\text{CASE}} + \theta_{\text{JC}} \text{ P}^{-}(\text{ in } \circ \text{K})\right) \\ t_{0} &= \text{ Effective Screening Time} (in 10^6 \text{ hrs.}) \\ &= A_{\text{TMET}} (at Screening Temp. (in \%)) \cdot (Actual Screening Time (in 10^6 \text{ hrs.})) \\ t_{50_{\text{MET}}} &= (QML) - \frac{.388 \cdot (Metal Type)}{J^2 A_{\text{TMET}}} (in 10^6 \text{ hrs.}) \\ &= (QML) - \frac{.388 \cdot (Metal Type)}{J^2 A_{\text{TMET}}} (in 10^6 \text{ hrs.}) \\ &= 3 \text{ the mean absolute value of Metal Current Density (in 10^6 \text{ Amps/cm}^2) \\ \sigma_{\text{MET}} &= \text{ sigma obtained from test data on electromigration failures from the same or a similar process. If this data is not available use $\sigma_{\text{MET}} = 1. \\ \text{time (in 10^6 hrs.)} \end{aligned}$$$

APPENDIX B: VHSIC-VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

HOT CARRIER FAILURE RATE EQUATION

 $\lambda_{HC} = \frac{.399}{(t+t_0)\sigma_{HC}} \exp\left[\frac{-.5}{\sigma_{HC}^2} \left(\ln (t + t_0) - \ln t_{50} H C\right)^2\right]$

 $I_{50_{HC}} = \frac{(QML)3.74x10^{-5}}{A_{T_{HC}}I_{d}} \left(\frac{I_{sub}}{I_{d}}\right)^{-2.5}$

(QML) = 2 if on QML, .5 if not

$$A_{T_{HC}} = \exp\left[\frac{.039}{8.617 \times 10^{-5}} \left(\frac{1}{T_{J}} - \frac{1}{298}\right)\right]$$
 (where $T_{J} = T_{C} + \theta_{JC}P$ (in °K))

k = Drain Current at Operating Temperature. If unknown use $I_d = 3.5 e^{-.00157 T_J}$ (in °K) (mA)

I_{sub} = Substrate Current at Operating Temperature. If unknown use I_{sub} = .0058 e ^{-.00689} T_J (in °K) (mA)

$$\sigma_{\mu c}$$
 = sigma derived from test data, if not available use 1.

$$t_0 = A_{T_{HC}}$$
 (at Screening Temp.(in °K)) • (Test Duration in 10^b hours)

t = time (in
$$10^6$$
 hrs.)

CONTAMINATION FAILURE RATE EQUATION

$$\lambda_{\rm CON}$$
 = .000022 e $^{-.0028 t_0} A_{\rm T_{\rm CON}}$ e $^{-.0028 A_{\rm T}} 1$

$$A_{T_{CON}} = \exp\left[\frac{-1.0}{8.617 \times 10^{-5}} \left(\frac{1}{T_{J}} - \frac{1}{298}\right)\right] \text{ (where } T_{J} = T_{C} + \theta_{JC}P \text{ (in °K)})$$

t₀ = Effective Screening Time

A_{Tcon} (at screening junction temperature (in °K)) • (actual screening time in 10⁶ hrs.)

B-4

t

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

< m

APPENDIX B: VHSIC/VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

PACKAGE FAILURE RATE EQUATION

- $\lambda_{PAC} = (.0024 + 1.85 \times 10^{-5} (\text{#Pins})) \pi_E \pi_Q \pi_{PT} + \lambda_{PH}$
- π_{E} = See Section 5.10
- π_Q = See Section 5.10

Package Type Factor (Π_{PT})

Package Type	Прт
DIP	1.0
Pin Grid Array	2.2
Chip Carrier (Surface Mount Technology)	4.7

 λ_{PH} = Package Hermeticity Factor

 $\lambda_{\text{PH}} = 0$ for Hermetic Packages

$$\lambda_{PH} \approx \frac{.399}{t\sigma_{PH}} \exp\left[\frac{-.5}{\sigma_{PH}^2} \left(\ln(t) - \ln(t_{50PH})\right)^2\right]$$
 for plastic packages

$$t_{50}_{PH} = 86 \times 10^{-6} \exp \left[\frac{.2}{8.617 \times 10^{-5}} \left(\frac{1}{T_A} - \frac{1}{298}\right)\right] \exp \left[\frac{2.96}{RH_{EFF}}\right]$$

T_A = Ambient Temp. (in °K)

$$RH_{eff} = (DC)(RH) \left[e^{5230} \left(\frac{1}{T_J} - \frac{1}{T_A} \right) \right] + (1-DC)(RH) \text{ where } T_J = T_C + \theta_{JC}P \text{ (in °K)}$$

(for example, for 50% Relative Humidity, use RH = .50)

 $\sigma_{\rm PH} = .74$

t = time (in
$$10^6$$
 hrs.)

APPENDIX B: VHSIC-VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

EOS/ESD FAILURE RATE EQUATION

$$\lambda_{\text{EOS}} = \frac{-\ln (1 - .00057 \text{ e}^{-.0002 \text{ VTH}})}{.00876}$$

 V_{TH} = ESD Threshold of the device using a 100 pF, 1500 ohm discharge model

MISCELLANEOUS FAILURE RATE EQUATION

$$\lambda_{MIS} = (.01 e^{-2.2 t_0}) (A_{T_{MIS}}) (e^{-2.2 A_{T_{MIS}}t_1})$$

A_{TMIS} = Temperature Acceleration Factor

$$= \exp\left[\frac{-.423}{8.6317 \times 10^{-5}} \left(\frac{1}{T_{J}} - \frac{1}{298}\right)\right]$$

where $T_J = T_C + \theta_{JC}P$ (in °K)

A_{TMIS} (at Screening Temp. (in °K)) * Actual Screening Time (in 10⁶ hours)

t = time (in
$$10^6$$
 hrs.)

APPENDIX C: BIBLIOGRAPHY

Publications listed with "AD" numbers may be obtained from:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22151 (703) 487-4650

U.S. Defense Contractors may obtain copies from:

Defense Technical Information Center Carneron Station - FDA, Bldg. 5 Alexandria, VA 22304-6145 (703) 274-7633

Documents with AD number prefix with the letter "B" or with the suffix "L": These documents are in a "Limited Distribution" category. Contact the Defense Technical Information Center for ordering procedures.

Copies of MIL-STDS's, MIL-HDBK's, and specifications are available from:

Standardization Document Order Desk 700 Robins Ave. Building 4, Section D Philadelphia, PA 19111-5094 (215) 697-2667

The year of publication of the Rome Laboratory (RL) (formerly Rome Air Development Center (RADC)) documents is part of the RADC (or RL) number, e.g., RADC-TR-88-97 was published in 1988.

- 1. "Laser Reliability Prediction," RADC-TR-75-210, AD A016437.
- 2. "Reliability Model for Miniature Blower Motors Per MIL-B-23071B," RADC-TR-75-178, AD A013735.
- 3. "High Power Microwave Tube Reliability Study," FAA-RD-76-172, AD A0033612.
- 4. "Electric Motor Reliability Model," RADC-TR-77-408, AD A050179.
- 5. "Development of Nonelectronic Part Cyclic Failure Rates," RADC-TR-77-417, AD A050678.

This study developed new failure rate models for relays, switches, and connectors.

6. "Passive Device Failure Rate Models for MIL-HDBK-217B," RADC-TR-77-432, AD A050180.

This study developed new failure rate models for resistors, capacitors and inductive devices.

- 7. "Quantification of Printed Circuit Board Connector Reliability," RADC-TR-77-433, AD A049980.
- 8. "Crimp Connection Reliability," RADC-TR-78-15, AD A050505.
- 9. "LSI/Microprocessor Reliability Prediction Model Development," RADC-TR-79-97, AD A068911.
- 10. "A Redundancy Notebook," RADC-TR-77-287, AD A050837.
- 11. "Revision of Environmental Factors for MIL-HDBK-217B," RADC-TR-80-299, AD A091837.

APPENDIX C: BIBLIOGRAPHY

- 12. "Traveling Wave Tube Failure Rates," RADC-TR-80-288, AD A096055.
- 13. "Reliability Prediction Modeling of New Devices," RADC-TR-80-237, AD A090029.

This study developed failure rate models for magnetic bubble memories and charge-coupled memories.

- 14. "Failure Rates for Fiber Optic Assemblies," RADC-TR-80-322, AD A092315.
- 15. "Printed Wiring Assembly and Interconnection Reliability," RADC-TR-81-318, AD A111214.

This study developed failure rate models for printed wiring assemblies, solderless wrap assemblies, wrapped and soldered assemblies and discrete wiring assemblies with electroless deposited plated through holes.

- 16. "Avionic Environmental Factors for MIL-HDBK-217," RADC-TR-81-374, AD B064430L.
- 17. "RADC Thermal Guide for Reliability Engineers," RADC-TR-82-172, AD A118839.
- 18. "Reliability Modeling of Critical Electronic Devices," RADC-TR-83-108, AD A135705.

This report developed failure rate prediction procedures for magnetrons, vidicions, cathode ray tubes, semiconductor lasers, helium-cadmium lasers, helium-neon lasers, Nd: YAG lasers, electronic filters, solid state relays, time delay relays (electronic hybrid), circuit breakers, I.C. Sockets, thumbwheel switches, electromagnetic meters, fuses, crystals, incandescent lamps, neon glow lamps and surface acoustic wave devices.

19. "Impact of Nonoperating Periods on Equipment Reliability," RADC-TR-85-91, AD A158843.

This study developed failure rate models for nonoperating periods.

20. "RADC Nonelectronic Reliability Notebook," RADC-TR-85-194, AD A163900.

This report contains failure rate data on mechanical and electromechanical parts.

21. "Reliability Prediction for Spacecraft," RADC-TR-85-229, AD A149551.

This study investigated the reliability performance histories of 300 Satellite vehicles and is the basis for the halving of all model $\pi_{\rm E}$ factors for MIL-HDBK-217E to MIL-HDKB-217E, Notice 1.

- 22. "Surface Mount Technology: A Reliability Review," 1986, Available from Reliability Analysis Center, PO Box 4700, Rome, NY 13440-8200, 800-526-4802.
- 23. "Thermal Resistances of Joint Army Navy (JAN) Certified Microcircuit Packages," RADC-TR-86-97, AD B108417.
- 24. "Large Scale Memory Error Detection and Correction," RADC-TR-87-92, AD B117765L.

This study developed models to calculate memory system reliability for memories incorporating error detecting and correcting codes. For a summary of the study see 1989 IEEE Reliability and Maintainability Symposium Proceedings, page 197, "Accounting for Soft Errors in Memory Reliability Prediction."

25. "Reliability Analysis of a Surface Mounted Package Using Finite Element Simulation," RADC-TR-87-177, AD A189488.

APPENDIX C: BIBLIOGRAPHY

- 26. "VHSIC Impact on System Reliability," RADC-TR-88-13, AD B122629.
- 27. "Reliability Assessment of Surface Mount Technology," RADC-TR-88-72, AD A193759.
- 28. "Reliability Prediction Models for Discrete Semiconductor Devices," RADC-TR-88-97, AD A200529.

This study developed new failure rate prediction models for GaAs Power FETS, Transient Suppressor Diodes, Infrared LEDs, Diode Array Displays and Current Regulator Diodes.

- 29. "Impact of Fiber Optics on System Reliability and Maintainability," RADC-TR-88-124, AD A201946.
- 30. "VHSIC/VHSIC Like Reliability Prediction Modeling," RADC-TR-89-171, AD A214601.

This study provides the basis for the VHSIC model appearing in MIL-HDBK-217F, Section 5.

31. "Reliability Assessment Using Finite Element Techniques," RADC-TR-89-281, AD A216907.

This study addresses surface mounted solder interconnections and microwire board's platedthru-hole (PTH) connections. The report gives a detailed account of the factors to be considered when performing an FEA and the procedure used to transfer the results to a reliability figure-of-merit.

32. "Reliability Analysis/Assessment of Advanced Technologies," RADC-TR-90-72, ADA 223647.

This study provides the basis for the revised microcircuit models (except VHSIC and Bubble Memories) appearing in MIL-HDBK-217F, Section 5.

- 33. "Improved Reliability Prediction Model for Field-Access Magnetic Bubble Devices," AFWAL-TR-81-1052.
- 34. "Reliability/Design Thermal Applications," MIL-HDBK-251.
- 35. "NASA Parts Application Handbook," MIL-HDBK-978-B (NASA). This handbook is a five volume series which discusses a full range of electrical, electronic and electromechanical component parts. It provides extensive detailed technical information for each component part such as: definitions, construction details, operating characteristics, derating, failure mechanisms, screening techniques, standard parts, environmental considerations, and circuit application.
- 36. "Nonelectronic Parts Reliability Data 1991," NPRD-91. This report contains field failure rate data on a variety of electrical, mechanical, electromechanical and microwave parts and assemblies (1400 different part types). It is available from the Reliability Analysis Center, PO Box 4700, Rome, NY 13440-8200, Phone: (315) 337-0900.

Custodians:

Army - CR Navy - EC Air Force - 17 Preparing Activity: Air Force - 17

Project No. RELI-0064

APPENDIX C: BIBLIOGRAPHY

Review Activities: Army - MI, AV, ER Navy - SH, AS, OS Air Force - 11, 13, 14, 15, 18, 19, 99

User Activities: Army - AT, ME, GL Navy - CG, MC, YD, TD Air Force - 85

C-4

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

INSTRUCTIONS: In a continuing effort to make our standardization documents better, the DoD provides this form for use in submitting comments and suggestions for improvements. All users of military standardization documents are invited to provide suggestions. This form may be detached, folded along the lines indicated, taped along the loose edge (DO NOT STAPLE), and mailed. In block 5, be as specific as possible about particular problem areas such as working which required interpretation, was too rigid, restrictive, loose, ambiguous, or was incompatible, and give proposed working changes which would aleviate the problems. Enter in block 6 any remarks not related to a specific paragraph of the document. If block 7 is filled out, an acknowledgement will be mailed to you within 30 days to let you know that your comments were received and are being considered.

NOTE: This form may not be used to request copies of documents, nor to request waivers, deviations, or clarification of specification requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

(Fold along this line)

(Fold along this line)

DEPARTMENT OF THE AIR FORCE RL/ERSS Griffiss AFB, NY 13441-5700

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300

BUSINESS REPLY MAIL FIRST CLASS PERMIT NO. 73236 WASHINGTON D.C. POSTAGE WILL BE PAID BY THE DEPARTMENT OF THE AIR FORCE

Rome Laboratory ATTN: RL/ERSS Griffiss AFB, NY 13441-5700

		Instructio	n - I	Revers	PROVEMENT PROPOSAL se Side)
1.		DOCUM			
	MIL-HDBK-217F	Re	liab	ility Pr	rediction of Electronic Equipment
32.	NAME OF SUBMITTING ORGANIZATION		4.		E OF ORGANIZATION (Merk one) VENDOR
Б	ADDRESS (Sireet, City, State, ZIP Code)				MANUFACTURER
					OTHER (Specify):
5.	PROBLEM AREAS a Paragraph Number and Wording:				
	b. Recommended Wording:				
	c Reason/Rationale for Recommendation:				
6.	REMARKS				
78	NAME OF SUBMITTER (Last, First, MI) - Optional		6.	WARV	TELEPHONE NUMBER
	MAILING ADDRESS (Street, City, State, ZIP Code) - O			(Include	OF SUBMISSION (YY/MM/DD)
D	D FORM 1426	PREVIO	US E		IS OBSOLETE

1

Source: http://www.assistdocs.com -- Downloaded: 2008-06-18T06:34Z Check the source to verify that this is the current version before use.

¢

.